Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Opt Express ; 31(12): 18993-19005, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381326

RESUMO

Plastic optical fiber communication (POFC) systems are particularly sensitive to signal performance and power budget. In this paper, we propose what we belive to be a novel scheme to jointly enhance the bit-error-ratio (BER) performance and coupling efficiency for multi-level pulse amplitude modulation (PAM-M) based POFC systems. The computational temporal ghost imaging (CTGI) algorithm is developed for PAM4 modulation for the first time to resist the system distortion. The simulation results reveal that enhanced BER performance and clear eye diagrams are acquired by using CTGI algorithm with an optimized modulation basis. Experimental results also investigate and show, with CTGI algorithm, the BER performance for 180 Mb/s PAM4 signals is enhanced from 2.2 × 10-2 to 8.4 × 10-4 over 10 m POF by using a 40 MHz photodetector. The POF link is equipped with micro-lenses at its end faces by using a ball-burning technique, which helps to increase the coupling efficiency from 28.64% to 70.61%. Both simulation and experimental results show that the proposed scheme is feasible to achieve a cost-effective and high-speed POFC system with short reach.

2.
Opt Express ; 31(16): 25372-25384, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710426

RESUMO

In this article, highly sensitive voltage, thermal and magnetic field fiber sensors were obtained in magnetic nanoparticles-doped E7 liquid crystals filled into photonic crystal fibers (PLCF). The voltage and temperature sensitivity reached at 12.598 nm/V and -3.874 nm/°C, respectively. The minimum voltage response time is 48.2 ms. The phase transition temperature Tc of liquid crystal with magnetic dopant was reduced from 60 °C to 46 °C. The magnetic field sensor based on magnetic nanoparticles-doped PLCF were obtained with sensitivity of 118.2 pm/mT from 400 to 460 mT.

3.
Chemistry ; 29(28): e202300081, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36975096

RESUMO

Molecular lanthanide phosphonates [Ln2 (H3 tpmm)2 (H2 O)6 ] ⋅ xH2 O (Ln=Eu, EuP; Ln=Tb, TbP) were synthesized. Single-crystal X-ray diffraction confirmed that EuP has a sandwich-like dinuclear structure, in which the Eu(III) center adopts a {EuO8 } distorted dodecahedral geometry. XRPD patterns prove that TbP and EuP are isomorphous and isostructural. EuP and TbP are highly thermally stable approaching 450 °C and exhibit red- and green-light emissions from the characteristic 4 f-4 f transition of the Eu3+ and Tb3+ , respectively. Interestingly, luminescence modulation is achieved for the chemically mixed Eu/Tb phosphonate analogues, c-Eux Tb2 -x P (x=1.5, 1, 0.5), and physically mixed Eu/Tb phosphonate materials, p-yEuP : zTbP (y : z=3 : 1, 1 : 1, 1 : 3), with varying the excitation wavelength. Of particular note, near-white-light emission is also achieved for c-EuTbP, p-EuP : TbP, and p-EuP : 3TbP when excited at 365 nm. Therefore, these dinuclear molecular lanthanide phosphonates emitting excitation wavelength and Eu3+ : Tb3+ ratio dependent luminescence might be potential candidates for color-tunable luminescence materials and white-light-emitting materials. On the other hand, the bright green-light emission makes TbP to be an excellent reusable luminescence sensor for selective detection of Fe3+ with Stern-Volmer quenching constant (KSV ) of 9.66×103  M-1 and detection limit (DL) of 0.42 µM through absorption competition caused luminescence quenching effect.

4.
Phys Chem Chem Phys ; 25(9): 7047, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794492

RESUMO

Correction for 'Liquid crystal random lasers' by Guangyin Qu et al., Phys. Chem. Chem. Phys., 2023, 25, 48-63, https://doi.org/10.1039/D2CP02859J.

5.
Opt Express ; 30(13): 23756-23762, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225050

RESUMO

A high performance AlGaN-based back-illuminated solar-blind ultraviolet (UV) p-i-n photodetectors (PDs) are fabricated on sapphire substrates. The fabricated PD exhibits ultra-low dark current of less than 0.15 pA under -5 V bias, which corresponds to a dark current density of <1.5×10-11 A/cm2. In particular, the PD shows broad spectral response from 240 nm to 285 nm with an excellent solar-blind/UV rejection ratio of more than 103. The peak responsivity at the wavelength of 275 nm reaches 0.19 A/W at -5 V, corresponding to a maximum quantum efficiency of approximately 88%. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. In addition, the PD shows a quite fast response of 0.62 ms. To the best of our knowledge, this is the record low dark current density and broadest response band reported for the back-illuminated AlGaN-based solar-blind UV detectors.

6.
Phys Chem Chem Phys ; 25(1): 48-63, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477742

RESUMO

The enthusiasm for research on liquid crystal random lasers (LCRLs) is driven by their unusual optical properties and promising potential for broad applications in manufacturing, communications, medicine and entertainment. From this perspective, we will summarize the most attractive advances in the development of LCRLs in the last decade and propose future prospects. This article will begin with a fundamental description of LCRLs, including the principle of laser generation and a description of LC substances. Then, we spend several chapters on the lasing performance control methods of LCRLs, including random lasing wavelength, threshold, and polarization properties. In addition, we analyze how the LC chiral agent structures, LC core-shell structures and new light-amplifying materials affect the design of LCRL devices. In the last chapter, we discuss the application of LCRLs in 3D displays, information encryption, biochemical sensing and other optoelectronics devices and finally end the perspective with LCRLs' likely directions in future research.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Desenho de Equipamento , Lasers , Luz
7.
J Opt Soc Am A Opt Image Sci Vis ; 39(3): 431-439, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297426

RESUMO

A type of Christiansen filter that takes the form of a smooth cylindrical lens of even symmetry is proposed. By varying the shape of the lens, the filter can be made to realize many common filtering responses, including the polynomial function response, the Gaussian function response, and the sinc function response. A systematic design technique based on inverse scattering is established, and a desired, prescribed response can be tailored by properly shaping the lens of the filter. Three prototypical Christiansen filters, namely, a second-order all-real-roots filter, a second-order sinc filter, and a Gaussian filter, are synthesized using the proposed method. A prescribed response at 545 nm with a FWHM of 2 nm is achieved systematically by all of the three Christiansen filters.

8.
Opt Lett ; 46(6): 1229-1232, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720154

RESUMO

The theoretical basis and experimental realization of an all-fiber self-mixing laser Doppler velocimetry based on frequency-shifted feedback in a distributed feedback (DFB) fiber laser are presented, which employs a pair of fiber-coupled acousto-optic modulators to adjust the modulation intensity and frequency of the laser self-mixing effect. Moreover, the minimum optical feedback intensity for the velocity signal successfully measured by the interferometer is 5.12 fW, corresponding to 0.16 photons per Doppler cycle. The results demonstrate that the proposed scheme can adapt to the non-contact measurement requirements of the wide-range speed and weak feedback level in the complex environment.

9.
Opt Express ; 28(4): 5179-5188, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121743

RESUMO

In this paper, pure silk protein was extracted from Bombyx mori silks and fabricated into a new kind of disordered bio-microfiber structure using electrospinning technology. Coherent random lasing emission with low threshold was achieved in the silk fibroin fibers. The random lasing emission wavelength can be tuned in the range of 33 nm by controlling the pump location with different scattering strengths. Therefore, the bio-microfiber random lasers can be a wide spectral light source when the system is doped with a gain or energy transfer medium with a large fluorescence emission band. Application of the random lasers of the bio-microfibers as a low-coherence light source in speckle-free imaging had also been studied.


Assuntos
Fibroínas/química , Lasers , Luz , Animais , Bombyx , Fibroínas/ultraestrutura , Processamento de Imagem Assistida por Computador , Dispositivos Ópticos
10.
Opt Express ; 27(3): 3255-3263, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732349

RESUMO

We have demonstrated the realization of a high-polarization random fiber laser (RFL) output based on the hybrid Raman and Erbium gain with the tailored effect provided by a 45°-tilted fiber Bragg grating (45°-TFBG), revealing an improvement in the polarization extinction ratio (PER) and achieving a PER of ~15.3 dB. The hybrid RFL system incorporating the 45°-TFBG has been systematically characterized. The random lasing wavelength can be fixed under the extremely weak feedback effect of the 45°-TFBG with reflectivity of 0.09%. In addition, numerical simulation has verified that the weak feedback can boost the random lasing emission with fixed wavelength using a power balance model, which is in good accordance with the experiment results.

11.
Opt Express ; 26(7): 8213-8223, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715790

RESUMO

Trapping light within cavities or waveguides in photonic crystals is an effective technology in modern integrated optics. Traditionally, cavities rely on total internal reflection or a photonic bandgap to achieve field confinement. Recent investigations have examined new localized modes that occur at a Dirac frequency that is beyond any complete photonic bandgap. We design Al2O3 dielectric cylinders placed on a triangular lattice in air, and change the central rod size to form a photonic crystal microcavity. It is predicted that waves can be localized at the Dirac frequency in this device without photonic bandgaps or total internal reflections. We perform a theoretical analysis of this new wave localization and verify it experimentally. This work paves the way for exploring localized defect modes at the Dirac point in the visible and infrared bands, with potential applicability to new optical devices.

12.
Opt Express ; 25(15): 18421-18430, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789327

RESUMO

We have demonstrated the realization of on-line temperature-controlled random lasers (RLs) in the polyhedral oligomeric silsesquioxanes (POSS) nanoparticles (NPs) as well as Pyrromethene 597 (PM597) laser dye, Fe3O4/SiO2 NPs as well as PM597, and only PM597 doped polymer optical fibers (POFs), respectively. The RLs can be obtained from the gained POFs system caused by multiple scattering of emitted light. The refractive index of the fiber core materials can be easily tuned via temperature due to the polymer with large thermo-optic coefficient. Meanwhile, the scattering mean free path of core in the POFs, which is the key role for the emission wavelength of RLs, is strongly dependent on the matrix refractive index. Thus emission wavelength of RLs in the POF temperature can be controlled through changing the temperature. With the increasing the temperature, the RL emission wavelength has occurred red-shift effect for the POFs.

13.
Opt Express ; 25(24): 30349-30364, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221065

RESUMO

The discovery of a new type of soliton occurring in periodic systems is reported. This type of nonlinear excitation exists at a Dirac point of a photonic band structure, and features an oscillating tail that damps algebraically. Solitons in periodic systems are localized states traditionally supported by photonic bandgaps. Here, it is found that besides photonic bandgaps, a Dirac point in the band structure of triangular optical lattices can also sustain solitons. Apart from their theoretical impact within the soliton theory, they have many potential uses because such solitons are possible in both Kerr material and photorefractive crystals that possess self-focusing and self-defocusing nonlinearities. The findings enrich the soliton family and provide information for studies of nonlinear waves in many branches of physics.

14.
Opt Lett ; 41(11): 2584-7, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244420

RESUMO

We demonstrate the realization of a polarized random polymer fiber laser (RPFL) in the different disordered gain media doped polymer optical fibers (POFs). Multiple scattering of disordered media in the orientated POF was experimentally verified to account for polarized lasing observed in our RPFL system. This Letter presents a new avenue for fabricating polarized RPFLs in a large scale. Meanwhile, the polarization-maintaining property of random lasing for different disorder POF are researched, which will open a window to designing a polarization-maintaining random fiber laser.

15.
Appl Opt ; 55(30): 8541-8549, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27828133

RESUMO

The large absolute photonic bandgaps of two-dimensional (2D) anisotropic magnetic plasma photonic crystals with hexagonal and square lattices are obtained by introducing tellurium dielectric rods using the modified plane wave expansion method. Equations for calculating the band structures in the irreducible part of the first Brillouin zone are theoretically deduced. The modulation properties indicate that the location and bandwidth of the absolute photonic bandgaps (PBGs) could be tuned by filling factor, plasma frequency, and magnetic field. The effective tunable ranges and critical values of these parameters are found. These results could be helpful in designing 2D anisotropic PPCs with large absolute PBGs.

16.
Appl Opt ; 55(12): B139-43, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140119

RESUMO

Optical cavities and waveguides are critical parts of modern optical devices. Traditionally, optical cavities and waveguides rely on photonic bandgaps, or total internal reflection, to achieve light trapping. It has been reported that a novel light trapping, which exists in triangular and honeycomb lattices, is attributed to the so-called Dirac point. Our analysis reveals that 2D triangular Archimedean-like lattice photonic crystals also can support this Dirac mode with similar characteristics. This is a new type of localized mode with a different algebraic field profile at a different specified Dirac frequency, which is also beyond any complete photonic bandgap. The new wave localization has different features and can be applied to the design of new optical devices.

17.
Opt Express ; 23(7): 8329-37, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968671

RESUMO

A particular photonic crystal fiber (PCF) designed with all circle air holes is proposed. Its characteristics are studied by full-vector finite element method (FEM) with anisotropic perfectly matched layer (PML). The simulation results indicated that the proposed PCF can realize high birefringence (up to 10(-2)), high nonlinearity (50W(-1)·km(-1) and 68W(-1)·km(-1) in X and Y polarizations respectively) and low confinement loss (less than 10(-3)dB/km at 1.55um wavelength).

18.
Soft Matter ; 11(30): 6145-51, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26144839

RESUMO

A series of one-armed cholesterol-linked azobenzene molecules named CholXAzo with different spacers were synthesized, in which Chol6Azo was found to have induced blue phases (BPs) with a concentration of 4.0 wt%. Under irradiation of 385 nm UV light with a density of 15.0 mW cm(-2), photo-responsive behaviour of the 4.0 wt% Chol6Azo doped sample named B3 shows a sensitive temperature dependence, which means that at 38.0 °C a phase transition from BPs to the isotropic phase is induced; however, at 33.0 °C, this phase transition does not take place. Results from the research show that the optically binary phase transition behaviour of B3 is sensitive to the isomerization degree of Chol6Azo, which is closely related to the stability of the BP structure and there is a critical isomerization degree of 13.7% for the phase transition of the B3 liquid crystals. Further POM observation shows that the liquid crystal samples doped with different concentrations of Chol6Azo have an increasing transition temperature for photo-induced phase transition from the BP to the isotropic phase along with the increasing concentration of Chol6Azo, which are found to have the same changing tendency with phase transition temperature from the isotropic phase to BPs and a phase diagram is made to map the optically binary behaviour of Chol6Azo doped blue phase liquid crystals. At last, a simple pattern with the BP and the isotropic phase arranged at an interval was made in this optically binary liquid crystalline blue phase under a suitable photomask.


Assuntos
Compostos Azo/química , Colesterol/química , Cristais Líquidos/química , Compostos Azo/síntese química , Colesterol/síntese química , Transição de Fase , Temperatura , Temperatura de Transição
19.
Opt Lett ; 39(24): 6911-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503028

RESUMO

We demonstrate the realization of two different kinds of random polymer optical fiber lasers to control the random lasing wavelength by changing the disorder of polymer optical fibers (POFs). One is a long-range disorder POF based on copolymer refractive-index inhomogeneity, and the other is a short-range disorder POF based on polyhedral oligomeric silsesquioxanes scattering. By end pumped both disorder POFs, the coherent random lasing for both is observed. Meanwhile, the random lasing wavelength of the short-range disorder POF because of a small scattering mean-free path has been found to be blue shifted with respect to the long-range disorder POF, which will give a way to control the random lasing wavelength.

20.
Nat Commun ; 15(1): 4589, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816395

RESUMO

Modulation of scattering in random lasers (RLs) by magnetic fields has attracted much attention due to its rich physical insights. We fabricate magnetic gain polymer optical fiber to generate RLs. From macroscopic experimental phenomena, with the increase of the magnetic field strength, the magnetic transverse photocurrent exists in disordered multiple scattering of RLs and the emission intensity of RLs decreases, which is the experimental observation of photonic Hall effect (PHE) and photonic magnetoresistance (PMR) in RLs. At the microscopic level, based on the field dependence theory of magnetic disorder in scattered nanoparticles and the replica symmetry breaking theory, the magnetic-induced transverse diffusion of photons reduces the scattering disorder, and then decreases the intensity fluctuation disorder of RLs. Our work establishes a connection between the above two effects and RLs, visualizes the influence of magnetic field on RL scattering at the microscopic level, which is crucial for the design of RLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA