Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Sci Food Agric ; 104(6): 3329-3340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082555

RESUMO

BACKGROUND: Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS: Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION: These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Zanthoxylum , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Sementes/metabolismo , Subtilisinas/química
2.
J Sci Food Agric ; 104(12): 7335-7346, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38651728

RESUMO

BACKGROUND: The present study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological properties. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity, water holding capacity, differential scanning calorimetry analysis and surface hydrophobicity. RESULTS: LSP was mainly composed of eight subunits (18, 25, 31, 47, 51, 56, 65 and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81-46.85%) in acidic environments. Meanwhile, there was more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%) and water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23 °C) of LSP at pH 5.0 was higher than those (80.10, 80.52 and 71.82 °C) at pH 3.0, 7.0 and 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in an alkaline environment. CONCLUSION: The findings of the present study are anticipated to serve as a valuable reference for the implementation of LSP in the food industry. © 2024 Society of Chemical Industry.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Lotus , Tamanho da Partícula , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Concentração de Íons de Hidrogênio , Lotus/química , Proteínas de Plantas/química , Reologia , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Secundária de Proteína
3.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158728

RESUMO

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Vigna , Vigna/química , Hidrolisados de Proteína/química , Proteínas de Plantas/química , Solubilidade
4.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644014

RESUMO

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Assuntos
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucose/metabolismo
5.
Mediators Inflamm ; 2023: 2613492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181805

RESUMO

Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic indicator of patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Inflamação/genética , Regulação Neoplásica da Expressão Gênica/genética , Microambiente Tumoral/genética
6.
J Sci Food Agric ; 103(11): 5432-5441, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37038905

RESUMO

BACKGROUND: In this study, the fermentation conditions of peony seed soy sauce (PSSS) koji were optimized by response surface method, and the quality components and antioxidant activity of PSSS were investigated at different low-salt solid-state fermentation stages. RESULTS: Results of response surface method showed that the optimal fermentation conditions were 460.6 g kg-1 water content, 48.6 h culture time, 31.5 °C culture temperature and ratio 2.1:1 (w/w) of peony seed meal:wheat bran, with the highest neutral protease activity (2193.78 U g-1 ) of PSSS koji. PSSS had the highest amino acid nitrogen (7.69 g L-1 ), salt-free soluble solids (185.26 g L-1 ), total free amino acids (49.03 g L-1 ), essential free amino acids (19.58 g L-1 ) and umami free amino acids (16.64 g L-1 ) at 20 days of fermentation. The highest total phenolics were 5.414 g gallic acid equivalent L-1 and total flavonoids 0.617 g rutin equivalent L-1 , as well as the highest DPPH radical scavenging activity (86.19%) and reducing power (0.8802, A700 ) of PSSS fermented at 30 days. Sensory evaluation showed that fermentation of 20 days and 25 days could produce a better taste and aroma of PSSS than 15 days and 30 days. CONCLUSION: PSSS had the highest quality components in the middle of fermentation (20 days) and the highest antioxidant activity in the late fermentation period (30 days). These results demonstrated that peony seed meal could be used to produce high-quality soy sauce with high antioxidant activity. © 2023 Society of Chemical Industry.


Assuntos
Paeonia , Alimentos de Soja , Fermentação , Antioxidantes , Paladar , Aminoácidos , Aminoácidos Essenciais
7.
Langmuir ; 33(51): 14643-14648, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29195047

RESUMO

Ratiometric fluorescent sensors have emerged as an attractive tool for analytical sensing and optical imaging due to their providing a built-in self-calibration for environmental effects. However, cumbersome processes of nanoparticles modified with fluorophores for constructing traditional ratiometric sensors limit their further application. Herein, we report a facile and label-free strategy for constructing a ratiometric sensor based on an aggregation-induced-emission (AIE)-active amine-terminated small molecule on the surface of gold nanoclusters (AuNCs). Intrinsic fluorescence of the terminal primary amine of the small molecule lysine resulting from AIE was first observed in the presence of glutathione-stabilized gold nanoclusters (GSH-AuNCs). Using lysine as both the fluorophore and the analyte, the synthesized GSH-AuNCs showed a good lysine-responsive ratiometric property. The AIE-active dual-emitting fluorescence property of the GSH-AuNCs/lysine complex made it feasible to achieve ratiometrically detection of the analyte without conjugated fluorogen. This AIE-active GSH-AuNC-based biosensor possesses high selectivity, rapid response, and excellent photostability. Moreover, the strategy opens a new pathway for the construction of a label-free ratiometric fluorescent sensor with various applications.

8.
Biotechnol Lett ; 38(4): 611-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721235

RESUMO

OBJECTIVES: Most butanol-producing strains of Clostridium prefer glucose over xylose, leading to a slower butanol production from lignocellulose hydrolysates. It is therefore beneficial to find and use a strain that can simultaneously use both glucose and xylose. RESULTS: Clostridium beijerinckii SE-2 strain assimilated glucose and xylose simultaneously and produced ABE (acetone/butanol/ethanol). The classic diauxic growth behavior was not seen. Similar rates of sugar consumption (4.44 mM glucose h(-1) and 6.66 mM xylose h(-1)) were observed suggesting this strain could use either glucose or xylose as the substrate and it has a similar capability to degrade these two sugars. With different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. CONCLUSIONS: ABE production profiles were similar on different substrates. Transcriptional studies on the effect of glucose and xylose supplementation, however, suggests a clear glucose inhibition on xylose metabolism-related genes is still present.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium beijerinckii/crescimento & desenvolvimento , Etanol/metabolismo , Glucose/farmacologia , Xilose/farmacologia , Proteínas de Bactérias/genética , Clostridium beijerinckii/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica/efeitos dos fármacos
9.
World J Microbiol Biotechnol ; 29(6): 1067-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23381617

RESUMO

The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.


Assuntos
Biotecnologia/métodos , Ácidos Graxos Voláteis/metabolismo , Microalgas/metabolismo , Amônia/metabolismo , Anaerobiose , Reatores Biológicos , Concentração de Íons de Hidrogênio , Microalgas/crescimento & desenvolvimento , Temperatura
10.
Polymers (Basel) ; 15(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896313

RESUMO

Torrefaction of biomass is one of the most promising pretreatment methods for deriving biofuels from biomass via thermochemical conversion processes. In this work, the changes in physicochemical properties and morphology features of the torrefied corn stalk, the changes in physicochemical properties and morphology features of the torrefied corn stalk were investigated. The results of this study showed that the elemental content and proximate analysis of the torrefied corn stalk significantly changed compared with those of the raw corn stalk. In particular, at 300 °C, the volatile content decreased to 41.79%, while the fixed carbon content and higher heating value increased to 42.22% and 21.31 MJ/kg, respectively. The H/C and O/C molar ratios of torrefied corn stalk at the 300 °C were drastically reduced to 0.99 and 0.27, respectively, which are similar to those of conventional coals in China. Numerous cracks and pores were observed in the sample surface of torrefied corn stalk at the torrefaction temperature range of 275 °C-300 °C, which could facilitate the potential application of the sample in the adsorption process and promote the release of gas products in pyrolysis. In the pyrolysis phase, the liquid products of the torrefied corn stalk decreased, but the H2/CO ratio and the lower heating value of the torrefied corn stalk increased compared with those of the raw corn stalk. This work paves a new strategy for the investigation of the effect of torrefaction on the physiochemical characteristics and pyrolysis of the corn stalk, highlighting the application potential in the conversion of biomass.

11.
Chemosphere ; 340: 139929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633605

RESUMO

The popularization of large-scale biogas project makes the disposal of fermentative residue an urgent issue to be solved. Hydrothermal carbonization (HTC) technology is suitable for treating wet biomass to produce carbonaceous materials. In this study, the solid residue from the two-phase anaerobic digestion (AD) was hydrothermally converted in the range of 180-240 °C, and the hydrochar and aqueous components were characterized for subsequent utilization. The heating values of hydrochar were indicated to be increased by 14.2% and 16.6% at 210 °C and 240 °C as compared with feedstock, and also the specific surface areas were 34.8 m2/g and 27.1 m2/g with 17.4- and 13.3-fold enhancement, respectively. The migration of elements such as S, Cl, K to aqueous phase was beneficial for fuel application. The mesoporous pores were dominant in hydrochars with ample oxygenated functional groups. In addition, the wastewater involved organic acids, phenols, and nitrogen-containing compounds, etc. Evaluating the biodegradability by AD, it was found that when the initial concentration was ≤8 g COD/L, the maximum methane yields up to 275.9 mL CH4/g CODremoval and 277.6 mL CH4/g CODremoval were obtained. The enhanced toxicity/inhibition of representative pollutants on microorganisms was significant at higher organic loading, which could be indicated in the microbial structure and diversity. As a conclusion, the integrated production of hydrochar and methane will provide an extended route for further processing of lignocellulosic fermentative residue.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Fermentação , Compostos de Nitrogênio
12.
Bioresour Technol ; 347: 126384, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808316

RESUMO

Thermochemical process of biomass is one of the promising renewable energy technologies; however, the by-product (wood vinegar wastewater) is rich in refractory organics, which is harmful to the environment and inhibits the conversion efficiency of microorganisms. Consequently, the dominant functional microbial communities corresponding to the various substrate were obtained through the continuous domestication, and the relationship between the dominant functional communities and the degradation of organic compounds was comprehensively analyzed. The bacterial community was absolutely dominant (approximately 85%), while archaea and fungi had similar relative abundance. The diversity showed that glucose was not conducive to the development of microbial diversity, while the substrate containing wood vinegar wastewater showed the opposite trend. The functional analysis revealed that the enrichment of bacteria associated with the hydrolysis and acidification of organics increased in the domestication process. Glucose facilitated hydrogen-trophic methanogenesis as the main methanogenic pathway in the methanogenic stage.


Assuntos
Microbiota , Esgotos , Ácido Acético , Anaerobiose , Archaea , Bactérias , Reatores Biológicos , Fungos , Metano , Metanol , Águas Residuárias
13.
Sci Total Environ ; 843: 157083, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780877

RESUMO

Hydrothermal liquefaction (HTL) has shown great potential to convert sewage sludge (SS) with high moisture into bio-crude. However, the disposal and reutilization of hydrothermal liquefaction wastewater (HTLWW) is a critical issue. Anaerobic digestion (AD) is proven to be an alternative to treat organic wastewater. Therefore, energy recovery from high ash-containing SS was studied by integrating AD with HTL. The effect of temperature on HTL efficiency was investigated and then methane production from HTLWW was conducted by AD with organic loading increasing from 2 g COD/L to 6 g COD/L. Results showed that the maximum bio-crude yield of 23.5 % was obtained at 350 °C. Methane yield of 309.4 mL CH4/g CODremoved was achieved at 2 g COD/L with COD removal rate of 72.5 %. Meanwhile, the microbial structure and abundance showed great shifts resulting from the adaptation to complex compounds. JGI-000079-D21, Aminicenantales, and Bacteroidetes_ vadinHA17 predominated in the bacterial community. Due to the presence of the toxic substances in HTLWW, such as phenolic and nitrogenous heterocyclic compounds, there was a decrease in methane yield when the organic loading was higher than 4 g COD/L. The organic matters in extracellular polymeric substances (EPS) were rich in fulvic acid-like and humic acid-like substances due to the attack and stimulation of toxicants. Under the condition of unstable fermentation, Advenella and Bacillus first appeared as phenol and pyridine degrading bacteria, respectively. The microbial diversity declined sharply to demonstrate the toxic effect of the refractory organics existing at high organic loading. The enrichment of Methanosaeta in methanogens meant that acetotrophic metabolism is the dominant pathway in methanogenesis. In this study, the profile of bio-fuel production from high ash-containing SS would provide an integrated reference to treat wet biomass and recover energy simultaneously.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Bactérias , Biomassa , Reatores Biológicos , Metano , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
14.
J Bacteriol ; 193(22): 6400-1, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038964

RESUMO

Bacillus pumilus S-1 is an efficient isoeugenol-utilizing producer of natural vanillin. The genome of B. pumilus S-1 contains the epoxide hydrolase and six candidate monooxygenases that make it possible to explore the mechanism involved in conversion of isoenguenol to vanillin in the B. pumilus strain.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Benzaldeídos/metabolismo , Eugenol/análogos & derivados , Genoma Bacteriano , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Eugenol/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular
15.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885493

RESUMO

The preparation of high-performance green cementitious material from industrial solid waste is a feasible large-scale utilization approach for industrial solid waste. This work investigates the feasibility of using industrial solid wastes in a sulphoaluminate-magnesium-potassium-phosphate cementitious composite material (SAC-MKPC) clinker preparation and the influence of the calcination temperature and clinker ingredients on the hydration behavior and mechanisms of the SAC-MKPC with a Mg/P ratio of 5. The results show that the novel SAC-MKPC that was prepared from aluminum slag, carbide slag, coal gangue, and magnesium desulfurization slag was composed mainly of mineral MgO, C4A3S¯, and C2S and the calcination temperature of the main mineral phases was 1250-1350 °C. The solid-waste-based SAC-MKPC had better mechanical properties and excellent water resistance compared with the MKPC. The optimal compressive strength reached 35.2, 70.9, 84.1, 87.7, and 101.6 MPa at 2 h, 1 d, 3 d, 7 d, and 28 d of hydration, respectively. The X-ray diffraction spectra and scanning electron micrographs of the hydration products of the SAC-MKPC clinker showed that AFt and K-struvite crystals coexisted and adhered to form a dense structure. This work provides an innovative idea to produce green cementitious material using industrial solid wastes and may promote the sustainable development of the power and mining industries.

16.
Bioresour Technol ; 328: 124852, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33611022

RESUMO

The effects of various microaeration strategies and process parameters on anaerobic digestion (AD) of lignocellulosic substrates have received increased attention; however, different results have been reported. To determine optimal conditions and clarify the mechanisms influencing this process, the effect of pretreatment of microaerobic microbial on corn stover decomposition and AD was investigated with real-time pH control. Fresh cow manure was chosen as the inoculum, as it has the strongest cellulose hydrolysis capacity under microaeration conditions. Microaeration microbial pretreatment effectively promoted the hydrolysis and acidogenesis of corn stover, and pH considerably affected total solid reduction, volatile fatty acid (VFA), and accumulation of soluble chemical oxygen demand (sCOD) patterns by shifting microbial communities. Different pH levels and pretreatment times led to positive and negative effects on methane yield. A 12-h pretreatment of substrate at pH 8 prior to AD increased the methane yield by 16.6% in comparison with the un-pretreated sample.


Assuntos
Reatores Biológicos , Lignina , Anaerobiose , Biocombustíveis , Concentração de Íons de Hidrogênio , Metano , Zea mays
17.
Artigo em Inglês | MEDLINE | ID: mdl-32850755

RESUMO

Wood vinegar wastewater (WVWW) is the main by-product of biomass pyrolysis process, which is more suitable to use anaerobic digestion (AD) to achieve energy recovery due to its large amount of organic matter. In this study, the up-flow anaerobic sludge bed (UASB) reactor was used to investigate the continuous anaerobic transformation of WVWW with gradient concentrations (0.3, 0.675, 1, 2, 3, 4, 5, 6, and 7 g COD/L). Then, the changes of microbial community, diversity index and functional gene were analyzed in detail. The results revealed that WVWW showed good AD performance in continuous fermentation. WVWW of organic loading rate (OLR) of >8.58 g COD/L⋅d showed severe inhibition on biodegradability and methane production, which is mainly due to the toxic substances as compared with the control group. The bacterial communities were dominated by phyla of Chloroflexi, Firmicutes, Proteobacteria, Acidobacteria, Synergistetes, and Actinobacteria. The gene abundances related to energy production, carbohydrate transport and metabolism were relatively high, which are mainly responsible for carbon forms conversion and carbohydrate degradation. This study will provide a basis for the screening and enrichment of functional bacteria and genes.

18.
Sci Total Environ ; 739: 139943, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534316

RESUMO

Anaerobic digestion (AD) of wood vinegar wastewater (WVWW) has considerable potential in energy recovery and sustainable development. WVWW contains abundant acetic acid and some refractory organics. Therefore, the batch and continuous AD of WVWW were investigated. The threshold value of the inhibitory concentration was obtained at a chemical oxygen demand (COD) of 4 g/L in batch AD. Three-dimensional electrolysis was adopted to improve the biodegradability of WVWW, and a reduction in the inhibitory rate from 38.2% to 4.9% and an increase in methane production by 53.8% were observed. The up-flow anaerobic sludge blanket reactor achieved an efficient conversion of methane at an organic loading rate (OLR) of <8.58 g COD/L·d. However, the OLR of 10.01 g COD/L·d decreased the methane production from 350.6 to 42.5 mL CH4/g CODfed. Aminicenantales, Acetobacterium, Anaerolineae, and SBR1031 were the dominant bacterial genera in continuous AD. Fewer genera with similar classifications were detected in the batch AD. In the archaea community, acetotrophic methanogens (Methanosaeta) dominated and increased continuously with increasing OLR. Microbial analysis revealed that toxic substances affected bacterial diversity and promoted the enrichment of Intestinimonas, Syntropobacter, and Propionicimonas at high OLRs. The continuous AD was most suitable for the energy recovery from WVWW.


Assuntos
Reatores Biológicos , Microbiota , Ácido Acético , Anaerobiose , Metano , Metanol , Esgotos , Eliminação de Resíduos Líquidos
19.
Bioresour Technol ; 306: 123090, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32169512

RESUMO

In this work, black liquor as a waste from paper industry was used to pretreat corn stover before anaerobic digestion. The batch mode anaerobic digestion achieved a methane production up to 260.5 mL/g VS when the corn stover was pretreated the black liquor of 12 g NaOH/L alkalinity for 24 h, which was 59.1% higher than the control. In the semi-continuous mode anaerobic digestion, black liquor pretreatment increased the buffering capacity of the digestate to maintain suitable pH and total VFA/alkalinity ratio with no adverse effect resulted from the presence of ions. The structural and chemical changes of corn stover after the pretreatment were investigated to rationalize the enhanced performance of anaerobic digestion.

20.
Bioresour Technol ; 307: 123180, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32203869

RESUMO

Corn straw silage (CSS) is one of the organic solid residues available for biogas production. The aim of this study was to investigate the possibility and optimal controlling strategy for anaerobic digestion (AD) of CSS. Four leaching bed reactors (LBR) were operated at different pH. Maximum volatile fatty acids (VFAs) concentration of 19.34 g/L was reached at pH 8.0 with acetic and propionic acids as dominant VFAs. The subsequent microbial analysis indicated that abundant bacteria were Firmicutes, Bacteroidetes and Proteobacteria. UASB as methanogenic reactor was integrated with the LBR. The organic loading rate (OLR) could reach 8 g COD/L·d with effective conversion of VFAs. Acetotrophic Methanosaeta and hydrogenotrophic Methanobacterium played major roles in methanogenic process. In the whole process, the results showed that methane yield of 143.4 mL CH4/g volatile solid (VS) was obtained. pH and OLR controls in two-phase AD were feasible for methane production from CSS.


Assuntos
Silagem , Zea mays , Anaerobiose , Reatores Biológicos , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA