Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(18): 7328-7335, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067249

RESUMO

Here, using various substrates, we demonstrate that the in-plane uniaxial strain engineering can enhance the Jahn-Teller distortions and promote selective orbital occupancy to induce an emergent antiferromagnetic insulating (AFI) phase at x = 1/3 of La1-xCaxMnO3. Such an AFI phase depends not only on the magnitude of epitaxial strain but also on the symmetry of the substrates. Using the large uniaxial strain imparted by DyScO3(001) substrate, the AFI ground state is achieved in a wide range of doping levels (0 ≤ x ≤ 1/2), leaving an extended AFI phase diagram. Moreover, it is found that hydrostatic pressure can tune the AFI phase back to a hidden ferromagnetic metallic phase, accompanied by the formation of accommodation strain. The coaction of the accommodation strain, uniaxial strain, and hydrostatic pressure produces complex phase competition and evolution, and the result may shed light on phase space control of other functional perovskites with the competing magnetic interactions.

2.
Adv Mater ; 34(47): e2206685, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36120849

RESUMO

In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, Ru-doping-enhanced AHE in La2/3 Sr1/3 Mn1-x Rux O3 epitaxial films is exploited. As the B-site Ru doping level increases up to 20%, the anomalous Hall resistivity at room temperature can be enhanced from nΩ cm to µΩ cm scale. Ru doping leads to strong competition between the ferromagnetic double-exchange interaction and the antiferromagnetic superexchange interaction. The resultant spin frustration and spin-glass state facilitate a strong skew-scattering process, thus significantly enhancing the extrinsic AHE. The findings can pave a feasible approach for boosting the controllability and reliability of oxide-based spintronic devices.

3.
ACS Appl Mater Interfaces ; 13(17): 20788-20795, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33877796

RESUMO

All-oxide-based synthetic antiferromagnets (SAFs) are attracting intense research interest due to their superior tunability and great potentials for antiferromagnetic spintronic devices. In this work, using the La2/3Ca1/3MnO3/CaRu1/2Ti1/2O3 (LCMO/CRTO) superlattice as a model SAF, we investigated the layer-resolved magnetic reversal mechanism by polarized neutron reflectivity. We found that the reversal of LCMO layer moments is mediated by nucleation, expansion, and shrinkage of a magnetic soliton. This unique magnetic reversal process creates a reversed magnetic configuration of the SAF after a simple field cycling. Therefore, it can enable vertical data transfer from the bottom to the top of the superlattice. The physical origin of this intriguing magnetic reversal process could be attributed to the cooperation of the surface spin-flop effect and enhanced uniaxial magnetic anisotropy of the bottom LCMO layer. This work may pave a way to utilize all-oxide-based SAFs for three-dimensional spintronic devices with vertical data transfer and high-density data storage.

4.
RSC Adv ; 10(9): 5260-5267, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498326

RESUMO

Semiconductor heterojunctions have higher photocatalytic performance than a single photocatalytic material. However, the energy band offset and the photocatalytic reaction mechanism of these heterojunctions remain controversial. Here, tungsten disulfide (WS2)/graphitic carbon nitride (GCN) heterojunction photocatalytic water splitting is investigated with the hybrid density functional method. The band structures and the density of states (DOS) indicate that the WS2/GCN heterojunction is a type-II heterojunction, and its valence band offset and conduction band offset are 0.27 and 0.04 eV, respectively. The differential charge density distribution and the work function calculation indicate that a built-in electric field is formed in the WS2/GCN heterojunction. The potential of the built-in electric field is 0.16 V, and its direction is from the GCN surface to the WS2 surface. The built-in electric field separates the photogenerated electrons and the holes in space, effectively improving the photocatalytic efficiency of the WS2/GCN heterojunction. Our work provides insights into the electronic properties and the photocatalytic hydrogen evolution mechanism of the WS2/GCN heterojunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA