Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7897): 523-528, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140398

RESUMO

A protein backbone structure is designable if a substantial number of amino acid sequences exist that autonomously fold into it1,2. It has been suggested that the designability of backbones is governed mainly by side chain-independent or side chain type-insensitive molecular interactions3-5, indicating an approach for designing new backbones (ready for amino acid selection) based on continuous sampling and optimization of the backbone-centred energy surface. However, a sufficiently comprehensive and precise energy function has yet to be established for this purpose. Here we show that this goal is met by a statistical model named SCUBA (for Side Chain-Unknown Backbone Arrangement) that uses neural network-form energy terms. These terms are learned with a two-step approach that comprises kernel density estimation followed by neural network training and can analytically represent multidimensional, high-order correlations in known protein structures. We report the crystal structures of nine de novo proteins whose backbones were designed to high precision using SCUBA, four of which have novel, non-natural overall architectures. By eschewing use of fragments from existing protein structures, SCUBA-driven structure design facilitates far-reaching exploration of the designable backbone space, thus extending the novelty and diversity of the proteins amenable to de novo design.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica , Proteínas/química
2.
PLoS Biol ; 21(8): e3002247, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590302

RESUMO

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.


Assuntos
Demência Frontotemporal , Schizosaccharomyces , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Dinâmica Mitocondrial , Adenosina Trifosfatases , Mitocôndrias , Schizosaccharomyces/genética
3.
Nature ; 555(7696): 363-366, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513654

RESUMO

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Eficiência Organizacional , Fazendeiros , China , Técnicas de Apoio para a Decisão , Grão Comestível/crescimento & desenvolvimento , Política Ambiental , Fertilizantes/estatística & dados numéricos , Abastecimento de Alimentos/métodos , Efeito Estufa , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
4.
Nature ; 537(7619): 202-206, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27501151

RESUMO

Molecular chaperones act on non-native proteins in the cell to prevent their aggregation, premature folding or misfolding. Different chaperones often exert distinct effects, such as acceleration or delay of folding, on client proteins via mechanisms that are poorly understood. Here we report the solution structure of SecB, a chaperone that exhibits strong antifolding activity, in complex with alkaline phosphatase and maltose-binding protein captured in their unfolded states. SecB uses long hydrophobic grooves that run around its disk-like shape to recognize and bind to multiple hydrophobic segments across the length of non-native proteins. The multivalent binding mode results in proteins wrapping around SecB. This unique complex architecture alters the kinetics of protein binding to SecB and confers strong antifolding activity on the chaperone. The data show how the different architectures of chaperones result in distinct binding modes with non-native proteins that ultimately define the activity of the chaperone.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Dobramento de Proteína , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Ligação Proteica , Desdobramento de Proteína , Especificidade por Substrato
5.
J Biomol NMR ; 69(1): 45-52, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28887770

RESUMO

TROSY-based triple resonance experiments are essential for protein backbone assignment of large biomolecular systems by solution NMR spectroscopy. In a survey of the current Bruker pulse sequence library for TROSY-based experiments we found that several sequences were plagued by artifacts that affect spectral quality and hamper data analysis. Specifically, these experiments produce sidebands in the 13C(t 1) dimension with inverted phase corresponding to 1HN resonance frequencies, with approximately 5% intensity of the parent 13C crosspeaks. These artifacts originate from the modulation of the 1HN frequency onto the resonance frequency of 13Cα and/or 13Cß and are due to 180° pulses imperfections used for 1H decoupling during the 13C(t 1) evolution period. These sidebands can become severe for CAi, CAi-1 and/or CBi, CBi-1 correlation experiments such as TROSY-HNCACB. Here, we implement three alternative decoupling strategies that suppress these artifacts and, depending on the scheme employed, boost the sensitivity up to 14% on Bruker spectrometers. A class of comparable Agilent/Varian pulse sequences that use WALTZ16 1H decoupling can also be improved by this method resulting in up to 60-80% increase in sensitivity.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Artefatos , Proteínas/química
6.
J Biomol NMR ; 69(4): 237-243, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29164453

RESUMO

In multidimensional solution NMR experiments, π pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during π pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated π pulse (G5) optimized for both inversion and refocusing in widely used 2- and 3-dimensional experiments. By replacing most of the hard π pulses, adiabatic or composite pulses on the 1H, 13C and 15N channels with G5 pulses, we obtained signal enhancements ranging from 80 to 240%. We anticipate that triply-compensated pulses will be crucial for improving the performance of multidimensional and multinuclear pulse sequences at ultra-high fields.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos
7.
J Biomol NMR ; 69(4): 215-227, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098507

RESUMO

Selective methyl labeling is an extremely powerful approach to study the structure, dynamics and function of biomolecules by NMR. Despite spectacular progress in the field, such studies remain rather limited in number. One of the main obstacles remains the assignment of the methyl resonances, which is labor intensive and error prone. Typically, NOESY crosspeak patterns are manually correlated to the available crystal structure or an in silico template model of the protein. Here, we propose methyl assignment by graphing inference construct, an exhaustive search algorithm with no peak network definition requirement. In order to overcome the combinatorial problem, the exhaustive search is performed locally, i.e. for a small number of methyls connected through-space according to experimental 3D methyl NOESY data. The local network approach drastically reduces the search space. Only the best local assignments are combined to provide the final output. Assignments that match the data with comparable scores are made available to the user for cross-validation by additional experiments such as methyl-amide NOEs. Several NMR datasets for proteins in the 25-50 kDa range were used during development and for performance evaluation against the manually assigned data. We show that the algorithm is robust, reliable and greatly speeds up the methyl assignment task.


Assuntos
Algoritmos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Conformação Proteica
8.
Proc Natl Acad Sci U S A ; 110(49): E4790-7, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248369

RESUMO

Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host-pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named "vesiculogenesis and immune response regulator."


Assuntos
Proteínas de Bactérias/química , Imunomodulação/fisiologia , Lipoproteínas/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Vesículas Transportadoras/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Imunomodulação/genética , Macrófagos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Dobramento de Proteína , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Vesículas Transportadoras/metabolismo
9.
Chaos ; 26(2): 023110, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931591

RESUMO

The weighted spectral distribution (WSD) is a metric defined on the normalized Laplacian spectrum. In this study, synchronic random graphs are first used to rigorously analyze the metric's scaling feature, which indicates that the metric grows sublinearly as the network size increases, and the metric's scaling feature is demonstrated to be common in networks with Gaussian, exponential, and power-law degree distributions. Furthermore, a deterministic model of diachronic graphs is developed to illustrate the correlation between the slope coefficient of the metric's asymptotic line and the average path length, and the similarities and differences between synchronic and diachronic random graphs are investigated to better understand the correlation. Finally, numerical analysis is presented based on simulated and real-world data of evolving networks, which shows that the ratio of the WSD to the network size is a good indicator of the average path length.

10.
Proc Natl Acad Sci U S A ; 109(25): 9792-7, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675116

RESUMO

The hexameric protein p97, a very abundant type II AAA ATPase (ATPase associated with various cellular activities), is involved in a diverse range of cellular functions. During its ATPase cycle p97 functions as an ATP motor, converting the chemical energy released upon hydrolysis of ATP to ADP into mechanical work, which is then directed toward the proteins that serve as substrates. A key question in this process is: How is the nucleotide-induced motion transmitted from the C-terminal ATPase domain (the D2 domain) of p97 to the distant N-terminal substrate-processing domain? We have previously reported the surprising finding that motion transmission between the two ATPase domains (the D2 and D1 domains) is mediated by the D1-D2 linker region of its neighboring protomer. In this study we report efforts to better understand this process. Our findings suggest that the amino acid sequence containing Gly-Gly that is located at the C terminus of the D1-D2 linker functions as a pivoting point that allows the dynamic movement of the D1-D2 linker. Furthermore, we found that locking the D1-D2 linker to the D2 domain by introducing disulfide bonds significantly impaired the motion-transmission process. These results support our previous model for interprotomer motion transmission, and provide more detailed information on how the motion transmission between the two ATPase domains of p97 is relayed by the flexible movement of the D1-D2 linker from its neighboring protomer.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 109(10): 3737-41, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355145

RESUMO

Multimeric AAA ATPases represent a structurally homologous yet functionally diverse family of proteins. The essential and highly abundant hexameric AAA ATPase p97 is perhaps the best studied AAA protein, playing an essential role in various important cellular activities. During ATP-hydrolysis process, p97 undergoes dramatic conformational changes, and these changes are initiated in the C-terminal ATPase domain and transmitted across the entire length of the molecule to the N-terminal effector domain. However, the detailed mechanism of the motion transmission remains unclear. Here, we report an interprotomer motion-transmission mechanism to explain this process: The nucleotide-dependent motion transmission between the two ATPase domains of one protomer is mediated by its neighboring protomer. This finding reveals a strict requirement for interprotomer coordination of p97 during the motion-transmission process and may shed light on studies of other AAA ATPases.


Assuntos
Adenosina Trifosfatases/química , Proteínas Nucleares/química , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Animais , Separação Celular , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Conformação Molecular , Movimento (Física) , Mutação , Proteínas Nucleares/fisiologia , Nucleotídeos/química , Conformação Proteica , Estrutura Terciária de Proteína
12.
Nat Struct Mol Biol ; 31(10): 1482-1491, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38890550

RESUMO

Molecular chaperone heat shock protein 90 (Hsp90) is a ubiquitous regulator that fine-tunes and remodels diverse client proteins, exerting profound effects on normal biology and diseases. Unraveling the mechanistic details of Hsp90's function requires atomic-level insights into its client interactions throughout the adenosine triphosphate-coupled functional cycle. However, the structural details of the initial encounter complex in the chaperone cycle, wherein Hsp90 adopts an open conformation while engaging with the client, remain elusive. Here, using nuclear magnetic resonance spectroscopy, we determined the solution structure of Hsp90 in its open state, bound to a disordered client. Our findings reveal that Hsp90 uses two distinct binding sites, collaborating synergistically to capture discrete hydrophobic segments within client proteins. This bipartite interaction generates a versatile complex that facilitates rapid conformational sampling. Moreover, our investigations spanning various clients and Hsp90 orthologs demonstrate a pervasive mechanism used by Hsp90 orthologs to accommodate the vast array of client proteins. Collectively, our work contributes to establish a unified conceptual and mechanistic framework, elucidating the intricate interplay between Hsp90 and its clients.


Assuntos
Proteínas de Choque Térmico HSP90 , Modelos Moleculares , Ligação Proteica , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Sítios de Ligação , Conformação Proteica , Ressonância Magnética Nuclear Biomolecular , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Interações Hidrofóbicas e Hidrofílicas
13.
J Biol Chem ; 287(39): 32450-8, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22865878

RESUMO

N-glycosylation is an essential and highly conserved protein modification. In eukaryotes, it is catalyzed by a multisubunit membrane-associated enzyme, oligosaccharyltransferase (OT). We report the high resolution structure of the C-terminal domain of eukaryotic Stt3p. Unlike its soluble ß-sheet-rich prokaryotic counterparts, our model reveals that the C-terminal domain of yeast Stt3p is highly helical and has an overall oblate spheroid-shaped structure containing a membrane-embedded region. Anchoring of this protein segment to the endoplasmic reticulum membrane is likely to bring the membrane-embedded donor substrate closer, thus facilitating glycosylation efficiency. Structural comparison of the region near the WWDYG signature motif revealed that the acceptor substrate-binding site of yeast OT strikingly resembles its prokaryotic counterparts, suggesting a conserved mechanism of N-glycosylation from prokaryotes to eukaryotes. Furthermore, comparison of the NMR and cryo-EM structures of yeast OT revealed that the molecular architecture of this acceptor substrate-recognizing domain has interesting spatial specificity for interactions with other essential OT subunits.


Assuntos
Hexosiltransferases/química , Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Cristalografia por Raios X , Glicosilação , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Nat Commun ; 14(1): 6860, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891324

RESUMO

E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and ß-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.


Assuntos
Anquirinas , Polaridade Celular , Anquirinas/metabolismo , Caderinas/metabolismo , Adesão Celular , Células Epiteliais/metabolismo , Espectrina/metabolismo , Humanos
15.
Heliyon ; 8(12): e12656, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636224

RESUMO

Runt-related transcription factor-1 (Runx1) is well known for its functions in hematopoiesis and leukemia but recent research has focused on its role in skeletal development and osteoarthritis (OA). Deficiency of the Runx1 gene is fatal in early embryonic development, and specific knockout of Runx1 in cell lineages of cartilage and bone leads to delayed cartilage formation and impaired bone calcification. Runx1 can regulate genes including collagen type II (Col2a1) and X (Col10a1), SRY-box transcription factor 9 (Sox9), aggrecan (Acan) and matrix metalloproteinase 13 (MMP-13), and the up-regulation of Runx1 improves the homeostasis of the whole joint, even in the pathological state. Moreover, Runx1 is activated as a response to mechanical compression, but impaired in the joint with the pathological progress associated with osteoarthritis. Therefore, interpretation about the role of Runx1 could enlarge our understanding of key marker genes in the skeletal development and an increased understanding of Runx1 could be helpful to identify treatments for osteoarthritis. This review provides the most up-to-date advances in the roles and bio-mechanisms of Runx1 in healthy joints and osteoarthritis from all currently published articles and gives novel insights in therapeutic approaches to OA based on Runx1.

16.
Protein Sci ; 30(3): 650-662, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33433908

RESUMO

Efficient production of large quantities of soluble, properly folded proteins is of high demand in modern structural and functional genomics. Despite much advancement toward improving recombinant protein expression, many eukaryotic proteins especially small peptides often fail to be recovered due to rapid proteolytic degradation. Here we show that the sandwiched-fusion strategy, which is based on two protein tags incorporated both at the amino- and carboxyl-terminus of target protein, could be employed to overcome this obstacle. We have exploited this strategy on heterologous expression in Escherichia coli of eight small degradation-prone eukaryotic proteins, whose successful recombinant productions have yet to be achieved. These include seven mitochondria-derived peptides (MDPS), a class of unique metabolic regulators of human body, and a labile mosquito transcription factor, Guy1. We show here that the sandwiched-fusion strategy, which provides robust protection against proteolysis, affords an economical method to obtain large quantities of pure five MDPs and the transcription factor Guy1, in sharp contrast to otherwise unsuccessful recovery using the traditional amino-fusion method. Further biophysical characterization and interaction studies by NMR spectroscopy confirmed that the proteins produced by this novel approach are properly folded into their biologically active structures. We anticipate this strategy could be widely utilized in production of other labile protein systems.


Assuntos
Proteínas Recombinantes de Fusão , Animais , Culicidae , Escherichia coli/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
Elife ; 102021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34898426

RESUMO

Nature has evolved many supramolecular proteins assembled in certain, sometimes even seemingly oversophisticated, morphological manners. The rationale behind such evolutionary efforts is often poorly understood. Here, we provide atomic-resolution insights into how the dynamic building of a structurally complex enzyme with higher order symmetry offers amenability to intricate regulation. We have established the functional coupling between enzymatic activity and protein morphological states of glutamine synthetase (GS), an old multi-subunit enzyme essential for cellular nitrogen metabolism. Cryo-EM structure determination of GS in both the catalytically active and inactive assembly states allows us to reveal an unanticipated self-assembly-induced disorder-order transition paradigm, in which the remote interactions between two subcomplex entities significantly rigidify the otherwise structurally fluctuating active sites, thereby regulating activity. We further show in vivo evidences that how the enzyme morphology transitions could be modulated by cellular factors on demand. Collectively, our data present an example of how assembly status transition offers an avenue for activity modulation, and sharpens our mechanistic understanding of the complex functional and regulatory properties of supramolecular enzymes.


Assuntos
Escherichia coli/química , Glutamato-Amônia Ligase/química , Sítios de Ligação , Escherichia coli/enzimologia , Glutamato-Amônia Ligase/metabolismo , Modelos Moleculares
18.
Biochemistry ; 49(6): 1115-26, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20047336

RESUMO

Oligosaccharyl transferase (OT) is a multisubunit enzyme that catalyzes N-linked glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum. In the case of Saccharomyces cerevisiae, OT is composed of nine integral membrane protein subunits. Defects in N-linked glycosylation cause a series of disorders known as congenital disorders of glycosylation (CDG). The C-terminal domain of the Stt3p subunit has been reported to contain the acceptor protein recognition site and/or catalytic site. We report here the subcloning, overexpression, and a robust but novel method of production of the pure C-terminal domain of Stt3p at 60-70 mg/L in Escherichia coli. CD spectra indicate that the C-terminal Stt3p is highly helical and has a stable tertiary structure in SDS micelles. The well-dispersed two-dimensional (1)H-(15)N HSQC spectrum in SDS micelles indicates that it is feasible to determine the atomic structure by NMR. The effect of the conserved D518E mutation on the conformation of the C-terminal Stt3p is particularly interesting. The replacement of a key residue, Asp(518), located within the WWDYG signature motif (residues 516-520), led to a distinct tertiary structure, even though both proteins have similar overall secondary structures, as demonstrated by CD, fluorescence and NMR spectroscopies. This observation strongly suggests that Asp(518) plays a critical structural role, in addition to the previously proposed catalytic role. Moreover, the activity of the protein was confirmed by saturation transfer difference and nuclear magnetic resonance titration studies.


Assuntos
Hexosiltransferases/biossíntese , Hexosiltransferases/isolamento & purificação , Proteínas de Membrana/biossíntese , Proteínas de Membrana/isolamento & purificação , Subunidades Proteicas/biossíntese , Subunidades Proteicas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Substituição de Aminoácidos/genética , Ácido Aspártico/genética , Domínio Catalítico/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Ácido Glutâmico/genética , Hexosiltransferases/genética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/genética , Micelas , Mutagênese Sítio-Dirigida , Subunidades Proteicas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Dodecilsulfato de Sódio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Am Chem Soc ; 132(11): 3662-3, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20178386

RESUMO

Structural determination of membrane proteins by NMR spectroscopy remains a challenge, especially for helical membrane proteins. Here we report the NMR assignment and secondary structure of a 31 kDa helical membrane protein, the C-terminal domain of Stt3p. The C-terminal domain of Stt3p has been proposed to be the catalytic domain of yeast oligosaccharyl transferase (OT), a multisubunit membrane-associated enzyme complex catalyzing N-glycosylation, which is an essential and highly conserved protein modification. NMR assignment is the first critical step in the determination of the high-resolution solution structure and further structure-function studies.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Detergentes/química , Micelas , Peso Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
20.
Biochemistry ; 47(35): 9208-19, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690705

RESUMO

PDZ domains are one of the most ubiquitous protein-protein interaction modules found in living systems. Glutaminase interacting protein (GIP), also known as Tax interacting protein 1 (TIP-1), is a PDZ domain-containing protein, which plays pivotal roles in many aspects of cellular signaling, protein scaffolding and modulation of tumor growth. We report here the overexpression, efficient refolding, single-step purification, and biophysical characterization of recombinant human GIP with three different C-terminal target protein recognition sequence motifs by CD, fluorescence, and high-resolution solution NMR methods. It is clear from our NMR analysis that GIP contains 2 alpha-helices and 6 beta-strands. The three target protein C-terminal recognition motifs employed in our interaction studies are glutaminase, beta-catenin and FAS. This is the first report of GIP recognition of the cell surface protein FAS, which belongs to the tumor necrosis factor (TNF) receptor family and mediates cell apoptosis. The dissociation constant ( K D) values for the binding of GIP with different interacting partners as measured by fluorescence spectroscopy range from 1.66 to 2.64 microM. Significant chemical shift perturbations were observed upon titration of GIP with above three ligands as monitored by 2D {(1)H, (15)N}-HSQC NMR spectroscopy. GIP undergoes a conformational change upon ligand binding.


Assuntos
Glutaminase/química , Glutaminase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sítios de Ligação , Dicroísmo Circular , Desenho de Fármacos , Glutaminase/antagonistas & inibidores , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA