Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 146(3): 2174-2186, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197858

RESUMO

Polyacenes, such as tetracene and pentacene, are common model systems for the study of photophysical phenomena such as singlet fission (SF) and triplet fusion, processes which may lead to increased photovoltaic efficiencies. While they exhibit desirable photophysical properties, these materials are not photostable and convert to unwanted endoperoxides in the presence of oxygen and light, limiting their use in real-world applications. Not only does oxygen degrade polyacenes but also it can affect their photophysics, leading to both the sensitization and quenching of different excited states. In this study, we characterize the effect of oxygen on 5,12-bis(triisopropylsilylethynyl) tetracene (TIPS-Tn) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) using transient absorption spectroscopy, and show that oxygen can significantly influence the population of excited states, in particular enhancing the polyacene triplet population. We additionally combine the time-resolved excited-state dynamics with photodegradation studies to determine the predominant mechanism of photooxidation, which has previously been unclear. We find that both molecules photodegrade predominantly via singlet oxygen; however, for TIPS-Tn, this occurs through the triplet state, whereas for TIPS-Pn, degradation occurs through the excited singlet. The photodegradation of TIPS-Tn is thus enhanced by faster rates of SF, whereas SF in TIPS-Pn increases the molecule's photostability. This work has implications both for the design of new materials for next-generation photovoltaics that can avoid photooxidation and for the study of their photophysics in real-world environments.

2.
Phys Chem Chem Phys ; 25(9): 6817-6829, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790866

RESUMO

Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, d, to study the dependence of SF in TIPS-Pn on d. At large d values, where the bimolecular SF process should be unfavourable, a relatively high SF quantum yield (ΦSF) is still observed, which implies a deviation from a random distribution of TIPS-Pn throughout the NP. Here, using polarisation-sensitive femtosecond time-resolved spectroscopy and Monte Carlo simulations of exciton migration and SF, we quantify the level of clustering of TIPS-Pn in the host matrix, which is responsible for the higher than expected ΦSF. The experimental data indicate a preservation of polarisation correlation by SF, which is uncommon because energy transfer in amorphous materials tends to result in depolarisation. We show that the preservation of polarisation correlation is due to SF upon exciton migration. Although exciton migration decorrelates polarisation, SF acts to remove decorrelated excitons to give an overall preservation of polarisation correlation.

3.
Phys Chem Chem Phys ; 25(35): 23867-23878, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642159

RESUMO

The strategy of using a bulk-heterojunction light-absorbing layer has led to the most efficient organic solar cells. However, optimising the blend morphology to maximise light absorption, charge generation and extraction can be challenging. Homojunction devices containing a single component have the potential to overcome the challenges associated with bulk heterojunction films. A strategy towards this goal is to increase the dielectric constant of the organic semiconductor to ≈10, which in principle would lead to free charge carrier generation upon photoexcitation. However, the factors that affect the thin film dielectric constants are still not well understood. In this work we report an organic semiconductor material that can be solution processed or vacuum evaporated to form good quality thin films to explore the effect of chromophore structure and film morphology on the dielectric constant and other optoelectronic properties. 2,2'-[(4,4,4',4'-Tetrakis{2-[2-methoxyethoxy]ethyl}-4H,4'H-{2,2'-bi[cyclo-penta[2,1-b:3,4-b']dithiophene]}-6,6'-diyl)bis(methaneylylidene)]dimalononitrile [D(CPDT-DCV)] was designed to have high electron-affinity end groups and low ionisation-potential central moieties. It can be processed from solution or be thermally evaporated, with the film morphology changing from face-on to a herringbone arrangement upon solvent or thermal annealing. The glycol solubilising groups led to the static dielectric constant (taken from capacitance measurements) of the films to be between 6 and 7 (independent of processing conditions), while the optical frequency dielectric constant depended on the processing conditions. The less ordered solution processed film was found to have the lowest optical frequency dielectric constant of 3.6 at 2.0 × 1014 Hz, which did not change upon annealing. In contrast, the more ordered evaporated film had an optical frequency dielectric constant 20% higher at 4.2 and thermal annealing further increased it to 4.5, which is amongst the highest reported for an organic semiconductor at that frequency. Finally, the more ordered evaporated films had more balanced charge transport, which did not change upon annealing.

4.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428045

RESUMO

We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic particles. The method extends currently available high-dimensional neural network potentials by addressing molecular anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained models of a rigid small molecule (benzene) and a semi-flexible organic semiconductor (sexithiophene), attaining structural accuracy close to the all-atom models for both molecules at a considerably lower computational expense. The machine-learning method of constructing the coarse-grained potential is shown to be straightforward and sufficiently robust to capture anisotropic interactions and many-body effects. The method is validated through its ability to reproduce the structural properties of the small molecule's liquid phase and the phase transitions of the semi-flexible molecule over a wide temperature range.

5.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038206

RESUMO

We use a novel non-equilibrium algorithm to simulate steady-state fluid transport through a two-dimensional (2D) membrane due to a concentration gradient by molecular dynamics (MD) for the first time. We confirm that, as required by the Onsager reciprocal relations in the linear-response regime, the solution flux obtained using this algorithm agrees with the excess solute flux obtained from an established non-equilibrium MD algorithm for pressure-driven flow. In addition, we show that the concentration-gradient-driven solution flux in this regime is quantified far more efficiently by explicitly applying a transmembrane concentration difference using our algorithm than by applying Onsager reciprocity to pressure-driven flow. The simulated fluid fluxes are captured with reasonable quantitative accuracy by our previously derived continuum theory of concentration-gradient-driven fluid transport through a 2D membrane [D. J. Rankin, L. Bocquet, and D. M. Huang, J. Chem. Phys. 151, 044705 (2019)] for a wide range of solution and membrane parameters, even though the simulated pore sizes are only several times the size of the fluid particles. The simulations deviate from the theory for strong solute-membrane interactions relative to thermal energy, for which the theoretical approximations breakdown. Our findings will be beneficial for a molecular-level understanding of fluid transport driven by concentration gradients through membranes made from 2D materials, which have diverse applications in energy harvesting, molecular separations, and biosensing.

6.
J Am Chem Soc ; 144(50): 22844-22849, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36508174

RESUMO

Inspired by a new biosynthetic hypothesis, we report a biomimetic total synthesis of atrachinenins A and B that explains their racemic nature. The synthesis exploits an intermolecular Diels-Alder reaction between a quinone meroterpenoid and E-ß-ocimene, followed by intramolecular (3 + 2) cycloaddition and a late-stage aerobic oxidation. Divergent transformations of a simple model system gave several complex polycyclic scaffolds, while also suggesting a structure revision for atrachinenin C.


Assuntos
Biomimética , Quinonas , Oxirredução , Ciclização , Reação de Cicloadição , Estereoisomerismo
7.
Soft Matter ; 18(9): 1843-1857, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35169825

RESUMO

From classical molecular dynamics simulations, we identify a simple and general predictor of molecular orientation at solid and vapour interfaces of isotropic fluids of disk-like anisotropic particles based on their shape and interaction anisotropy. For a wide variety of inter-particle interactions, temperatures, and substrate types within the range of typical organic semiconductors and their processing conditions, we find remarkable universal scaling of the orientation at the interface with the free energy calculated from pair interactions between close-packed nearest neighbours and an empirically derived universal relationship between the entropy and the shape anisotropy and bulk volume fraction of the fluid particles. The face-on orientation of fluid particles at the solid interface is generally predicted to be the equilibrium structure, although the alignment can be controlled by tuning the particle shape and substrate type, while changing the strength of fluid-fluid interactions is likely to play a less effective role. At the vapour interface, only the side-on structure is predicted, and conditions for which the face-on structure may be preferred, such as low temperature, low interaction anisotropy, or low shape anisotropy, are likely to result in little orientation preference (due to the low anisotropy) or be associated with a phase transition to an anisotropic bulk phase for systems with interactions in the range of typical organic semiconductors. Based on these results, we propose a set of guidelines for the rational design and processing of organic semiconductors to achieve a target orientation at a solid or vapour interface.

8.
J Chem Phys ; 156(18): 184118, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568534

RESUMO

We derive a systematic and general method for parameterizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g., all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, torques, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parameterized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parameterized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as liquid crystals, organic semiconductors, and nucleic acids.


Assuntos
Simulação de Dinâmica Molecular , Anisotropia , Temperatura , Torque
9.
J Chem Phys ; 157(8): 084312, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050006

RESUMO

Singlet fission (SF), a process that produces two triplet excitons from one singlet exciton, has attracted recent interest for its potential to circumvent the detailed-balance efficiency limit of single-junction solar cells. For the potential of SF to be fully realized, accurate assignment and quantification of SF is necessary. Intersystem crossing (ISC) is another process of singlet to triplet conversion that is important to distinguish from SF to avoid either over- or under-estimation of SF triplet production. Here, we quantify an upper bound on the rate of ISC in two commonly studied SF chromophores, TIPS-pentacene and TIPS-tetracene, by using transient absorption spectroscopy of solutions of varying concentrations in toluene. We show that SF in solutions of these acenes has previously been misidentified as ISC, and vice versa. By determining a bimolecular SF rate constant in concentrated solutions in which SF dominates over ISC, we distinguish triplet formation due to SF from triplet formation due to ISC and show that the characteristic time scale of ISC must be longer than 325 ns in TIPS-pentacene, while it must be longer than 118 ns in TIPS-tetracene. We additionally note that no excimer formation is observed in the relatively dilute (up to 8 mM) solutions studied here, indicating that previous excimer formation observed at much higher concentrations may be partially due to aggregate formation. This work highlights that an accurate quantification of ISC is crucial as it leads to accurate determination of SF rate constants and yields.


Assuntos
Naftacenos , Naftacenos/química
10.
Angew Chem Int Ed Engl ; 61(34): e202203311, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35680561

RESUMO

Structurally unique natural products pose biosynthetic puzzles whose solution can inspire new chemical reactions. Herein, we propose a unified biosynthetic pathway towards some complex meroterpenoids-the hyperireflexolides, biyoulactones, hybeanones and hypermonones. This hypothesis led to the discovery of uncatalyzed, intramolecular carbonyl-ene reactions that are spontaneous at room temperature. We also developed an anionic cascade reaction featuring an α-hydroxy-ß-diketone rearrangement and an intramolecular aldol reaction to access four distinct natural product scaffolds from a common intermediate.


Assuntos
Produtos Biológicos , Cetonas , Ciclização
11.
Nano Lett ; 20(11): 8089-8095, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048551

RESUMO

Nanopores in solid state membranes are a tool able to probe nanofluidic phenomena or can act as a single molecular sensor. They also have diverse applications in filtration, desalination, or osmotic power generation. Many of these applications involve chemical, or hydrostatic pressure differences which act on both the supporting membrane, and the ion transport through the pore. By using pressure differences between the sides of the membrane and an alternating current approach to probe ion transport, we investigate two distinct physical phenomena: the elastic deformation of the membrane through the measurement of strain at the nanopore, and the growth of ionic current rectification with pressure due to pore entrance effects. These measurements are a significant step toward the understanding of the role of elastic membrane deformation or fluid flow on linear and nonlinear transport properties of nanopores.

12.
J Am Chem Soc ; 141(6): 2348-2355, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636404

RESUMO

Encapsulation of biomacromolecules in metal-organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here, we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.


Assuntos
Enzimas Imobilizadas/química , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas/química , Cápsulas , Catalase/química , Catalase/metabolismo , Enzimas Imobilizadas/metabolismo , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Temperatura , Urease/química , Urease/metabolismo
13.
Phys Chem Chem Phys ; 21(19): 9740-9746, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038515

RESUMO

The out-coupling of light from an organic light-emitting diode, and thus its efficiency, strongly depends on the orientation of the transition dipole moment (TDM) of the emitting molecules with respect to the substrate surface. Despite the importance of this quantity, theoretical investigations of the direction of the TDM of phosphorescent emitters based on iridium(iii) complexes remain limited. One challenge is to find an appropriate level of theory able to accurately predict the direction of the TDM. Here, we report relativistic time-dependent density functional theory (TDDFT) calculations of the TDM, emission energies and lifetimes for both the ground-state (S0) and triplet (T1) excited-state geometries of fac-tris(2-phenylpyridyl)iridium(iii) (Ir(ppy)3), using the two-component zero-order regular approximation (ZORA) or including spin-orbit coupling (SOC) perturbatively using the simpler one-component (scalar) formulation. We show that the one- and two-component approaches give similar emission energies and overall radiative lifetimes for each individual geometry. Use of the S0 geometry leads to two of the excited triplet substates being degenerate, with the degeneracy lifted for the T1 geometry, with the latter matching experiment. Two-component calculations using the T1 geometry give results for the direction of the TDM more consistent with experiment than calculations using the S0 geometry. Finally, we show that adding a dielectric medium does not affect the direction of TDM significantly, but leads to better agreement with the experimentally measured radiative lifetime.

14.
J Chem Phys ; 151(4): 044705, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370531

RESUMO

Transport of liquid mixtures through porous membranes is central to processes such as desalination, chemical separations, and energy harvesting, with ultrathin membranes made from novel 2D nanomaterials showing exceptional promise. Here, we derive, for the first time, general equations for the solution and solute fluxes through a circular pore in an ultrathin planar membrane induced by a solute concentration gradient. We show that the equations accurately capture the fluid fluxes measured in finite-element numerical simulations for weak solute-membrane interactions. We also derive scaling laws for these fluxes as a function of the pore size and the strength and range of solute-membrane interactions. These scaling relationships differ markedly from those for concentration-gradient-driven flow through a long cylindrical pore or for flow induced by a pressure gradient or an electric field through a pore in an ultrathin membrane. These results have broad implications for transport of liquid mixtures through membranes with thickness on the order of the characteristic pore size.

15.
Angew Chem Int Ed Engl ; 58(9): 2791-2794, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30648330

RESUMO

The total synthesis of nyingchinoids A and B has been achieved through successive rearrangements of a 1,2-dioxane intermediate that was assembled using a visible-light photoredox-catalysed aerobic [2+2+2] cycloaddition. Nyingchinoid D was synthesised with a competing [2+2] cycloaddition. Based on NMR data and biosynthetic speculation, we proposed a structure revision of the related natural product rasumatranin D, which was confirmed through total synthesis. Under photoredox conditions, we observed the conversion of a cyclobutane into a 1,2-dioxane through retro-[2+2] cycloaddition followed by aerobic [2+2+2] cycloaddition.


Assuntos
Materiais Biomiméticos/síntese química , Luz , Terpenos/síntese química , Materiais Biomiméticos/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Estereoisomerismo , Terpenos/química
16.
J Am Chem Soc ; 140(20): 6416-6425, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29699391

RESUMO

Site-selective organic transformations are commonly required in the synthesis of complex molecules. By employing a bespoke metal-organic framework (MOF, 1·[Mn(CO)3N3]), in which coordinated azide anions are precisely positioned within 1D channels, we present a strategy for the site-selective transformation of dialkynes into alkyne-functionalized triazoles. As an illustration of this approach, 1,7-octadiyne-3,6-dione stoichiometrically furnishes the mono-"click" product N-methyl-4-hex-5'-ynl-1',4'-dione-1,2,3-triazole with only trace bis-triazole side-product. Stepwise insights into conversions of the MOF reaction vessel were obtained by X-ray crystallography, demonstrating that the reactive sites are "isolated" from one another. Single-crystal to single-crystal transformations of the Mn(I)-metalated material 1·[Mn(CO)3(H2O)]Br to the corresponding azide species 1·[Mn(CO)3N3] with sodium azide, followed by a series of [3+2] azide-alkyne cycloaddition reactions, are reported. The final liberation of the "click" products from the porous material is achieved by N-alkylation with MeBr, which regenerates starting MOF 1·[Mn(CO)3(H2O)]Br and releases the organic products, as characterized by NMR spectroscopy and mass spectrometry. Once the dialkyne length exceeds the azide separation, site selectivity is lost, confirming the critical importance of isolated azide moieties for this strategy. We postulate that carefully designed MOFs can act as physical protecting groups to facilitate other site-selective and chemoselective transformations.

17.
Phys Chem Chem Phys ; 20(20): 14013-14023, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29744501

RESUMO

Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes. The ability of molecular simulations in explicit solvent to accurately capture triplex thermodynamics is verified for the first time, with the free energy to dissociate a 15-base antiparallel purine triplex-forming oligomer (TFO) from the duplex found to be slightly higher than reported experimentally. The presence of netropsin in the minor groove destabilises the triplex as expected, reducing the dissociation free energy by approximately 50%. Netropsin binding is associated with localised narrowing of the minor groove near netropsin, an effect that has previously been under contention. This leads to localised widening of the major groove, weakening hydrogen bonds between the TFO and duplex. Consequently, destabilisation is found to be highly localised, occurring only when netropsin is bound directly opposite the TFO. The simulations also suggest that near saturation of the minor groove with ligand is required for complete triplex dissociation. A structural analysis of the DNA triplexes that can form with the FRDA-related duplex sequence indicates that the triplex with a parallel homopyrimidine TFO is likely to be more stable than the antiparallel homopurine-TFO triplex, which may have implications for disease onset and treatment.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Termodinâmica , Humanos
19.
Nano Lett ; 17(10): 6464-6468, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891653

RESUMO

Atomistic nonequilibrium molecular dynamics simulations have been used to model the induction of molecular orientation anisotropy within the emission layer of an organic light-emitting diode (OLED) formed by vapor deposition. Two emitter species were compared: racemic fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) and trans-bis(2-phenylpyridine)(acetylacetonate)iridium(III) (Ir(ppy)2(acac)). The simulations show that the molecular symmetry axes of both emitters preferentially align perpendicular to the surface during deposition. The molecular arrangement formed on deposition combined with consideration of the transition dipole moments provides insight into experimental reports that Ir(ppy)3 shows isotropic emission, while Ir(ppy)2(acac) displays improved efficiency due to an apparent preferential alignment of the transition dipole vectors parallel to the substrate. The simulations indicate that this difference is not due to differences in the extent of emitter alignment, but rather differences in the direction of the transition dipoles within the two complexes.

20.
Angew Chem Int Ed Engl ; 56(29): 8412-8416, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28160366

RESUMO

Single-crystal X-ray crystallography is employed to characterize the reaction species of a full catalytic carbonylation cycle within a MnII -based metal-organic framework (MOF) material. The structural insights explain why the Rh metalated MOF is catalytically competent toward the carbonylation of MeBr but only affords stoichiometric turn-over in the case of MeI. This work highlights the capability of MOFs to act as platform materials for studying single-site catalysis in heterogeneous systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA