Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1320: 343032, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142795

RESUMO

Quaternary phosphonium salts, a significant category of organophosphorus compounds, have garnered substantial attention from chemists due to their wide range of applications across various research areas. These compounds are utilized in organic synthesis, catalysis, medicinal chemistry, natural materials, and coordination chemistry. Their versatility and effectiveness in these fields make them valuable tools in scientific research. Despite their extensive use in various applications, the potential of quaternary phosphonium compounds as fluorescent agents for revealing latent fingerprints (LFPs) remains largely unexplored, presenting an exciting opportunity for further research and development in forensic science. In this study, we designed molecules that combine the aggregation-induced emission (AIE) chromophore with triphenylphosphine to create a series of novel AIE amphiphiles, namely TPP1, TPP2, and TPP3. Through precise adjustment of the carbon chain length between the phenoxy group and the terminal triphenylphosphine, we were able to finely tune the nanostructures and hydrophobicity of the materials. TPP3 emerged as the optimal candidate, possessing the ideal particle size and hydrophobicity to effectively bind to LFPs, thus enabling efficient fingerprint visualization with enhanced fluorescence upon aggregation. Our findings introduce an innovative approach to fingerprint visualization, offering high selectivity, superior imaging of level 3 structures, and long-term effectiveness (up to 30 days). Additionally, TPP3's outstanding performance in imaging level 3 structures of LFPs is beneficial for analyzing incomplete LFPs and identifying individuals. By significantly improving the detection and analysis of LFPs, this approach ensures more accurate and reliable identification, making it invaluable for forensic investigations and security measures. The adaptability of these compounds to various fingerprint surfaces highlights their potential in diverse practical applications, enhancing their utility in both forensic science and security fields. This versatility allows for precise fingerprint visualization across different scenarios, making them a critical tool for advancing biometric and security technologies.


Assuntos
Dermatoglifia , Nanopartículas , Compostos Organofosforados , Compostos Organofosforados/química , Nanopartículas/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas
2.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006102

RESUMO

Hydrogels' exceptional mechanical strength and skin-adhesion characteristics offer significant advantages for various applications, particularly in the fields of tissue adhesion and wearable sensors. Herein, we incorporated a combination of metal-coordination and hydrogen-bonding forces in the design of stretchable and adhesive hydrogels. We synthesized four hydrogels, namely PAID-0, PAID-1, PAID-2, and PAID-3, consisting of acrylamide (AAM), N,N'-methylene-bis-acrylamide (MBA), and methacrylic-modified dopamine (DA). The impact of different ratios of iron (III) ions to DA on each hydrogel's performance was investigated. Our results demonstrate that the incorporation of iron-dopamine complexes significantly enhances the mechanical strength of the hydrogel. Interestingly, as the DA content increased, we observed a continuous and substantial improvement in both the stretchability and skin adhesiveness of the hydrogel. Among the hydrogels tested, PAID-3, which exhibited optimal mechanical properties, was selected for adhesion testing on various materials. Impressively, PAID-3 demonstrated excellent adhesion to diverse materials and, combined with the low cytotoxicity of PAID hydrogel, holds great promise as an innovative option for biomedical engineering applications.

3.
RSC Adv ; 11(63): 40228-40234, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494111

RESUMO

Materials that have higher fluorescence emission in the solid state than molecules in solution have recently been paid more attention by the scientific community due to their potential applications in various fields. In this work, we newly synthesized benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates, which show aggregation-induced emission (AIE) features in their solid and aggregate states. It was found that oxygen and sulfur substitutions can dramatically influence the molecular structures and polarities of the dyes, leading to different degrees of the AIE phenomenon. The benzothiazolyl-imidazole molecule has lower polarity compared to that of benzoxazolyl-imidazole; therefore, the dye bearing a benzothiazolyl group shows higher emission intensity and dual emission in aqueous solution. Theoretical calculation results suggest that the benzothiazolyl-imidazole molecules might have electrostatic interactions between sulfur and nitrogen atoms, explaining the experimental observations of lower critical aggregation concentration and photophysical properties both in solution and in the solid state. The theoretical calculations agree with the experimental data, thus demonstrating a potent strategy to gain a deep understanding of the structure-property relationships to design solid-state fluorescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA