Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
iScience ; 27(6): 110007, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868183

RESUMO

Inferring prospective outcomes and updating behavior are prerequisites for making flexible decisions in the changing world. These abilities are highly associated with the functions of the orbitofrontal cortex (OFC) in humans and animals. The functional specialization of OFC subregions in decision-making has been established in animals. However, the understanding of how human OFC contributes to decision-making remains limited. Therefore, we studied this issue by examining the information representation and functional interactions of human OFC subregions during inference-based decision-making. We found that the medial OFC (mOFC) and lateral OFC (lOFC) collectively represented the inferred outcomes which, however, were context-general coding in the mOFC and context-specific in the lOFC. Furthermore, the mOFC-motor and lOFC-frontoparietal functional connectivity may indicate the motor execution of mOFC and the cognitive control of lOFC during behavioral updating. In conclusion, our findings support the dissociable functional roles of OFC subregions in decision-making.

2.
Brain Struct Funct ; 227(5): 1697-1710, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35194657

RESUMO

Successful navigation is largely dependent on the ability to make correct decisions at navigational decision points. However, the interaction between the brain regions associated with the navigational decision point in a schematic map is unclear. In this study, we adopted a 2D subway paradigm to study the neural basis underlying decision points. Twenty-eight subjects performed a spatial navigation task using a subway map during fMRI scanning. We adopted a voxel-wise general linear model (GLM) approach and found four brain regions, the left hippocampus (HIP), left parahippocampal gyrus (PHG), left ventromedial prefrontal cortex (vmPFC), and right retrosplenial cortex (RSC), activated at a navigational decision point in a schematic map. Using a psychophysiological interactions (PPI) method, we found that (1) both the left vmPFC and right HIP interacted cooperatively with the right RSC, and (2) the left HIP and the left vmPFC interacted cooperatively at the decision point. These findings may be helpful for revealing the neural mechanisms underlying decision points in a schematic map during spatial navigation.


Assuntos
Navegação Espacial , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Giro Para-Hipocampal/fisiologia , Navegação Espacial/fisiologia
3.
Brain Imaging Behav ; 16(1): 476-491, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34410610

RESUMO

Parkinson's disease (PD), a chronic neurodegenerative disease, is characterized by sensorimotor and cognitive deficits. Previous diffusion tensor imaging (DTI) studies found abnormal DTI metrics in white matter bundles, such as the corpus callosum, cingulate, and frontal-parietal bundles, in PD patients. These studies mainly focused on alterations in microstructural features of long-range bundles within the deep white matter (DWM) that connects pairs of distant cortical regions. However, less is known about the DTI metrics of the superficial white matter (SWM) that connects local cortical regions in PD patients. To determine whether the DTI metrics of the SWM were different between the PD patients and the healthy controls, we recruited DTI data from 34 PD patients and 29 gender- and age-matched healthy controls. Using a probabilistic tractographic approach, we first defined a population-based SWM mask across all the subjects. Using a tract-based spatial statistical (TBSS) analytic approach, we then identified the SWM bundles showing abnormal DTI metrics in the PD patients. We found that the PD patients showed significantly lower DTI metrics in the SWM bundles connecting the sensorimotor cortex, cingulate cortex, posterior parietal cortex (PPC), and parieto-occipital cortex than the healthy controls. We also found that the clinical measures in the PD patients was significantly negatively correlated with the fractional anisotropy in the SWM (FASWM) that connects core regions in the default mode network (DMN). The FASWM in the bundles that connected the PPC was significantly positively correlated with cognitive performance in the PD patients. Our findings suggest that SWM may serve as the brain structural basis underlying the sensorimotor deficits and cognitive degeneration in PD patients.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Substância Branca , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA