Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921011

RESUMO

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731861

RESUMO

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia
3.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016390

RESUMO

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Assuntos
Indústria Farmacêutica , Medicamentos de Ervas Chinesas , Flavonoides , Microbiologia Industrial , Catálise , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Escherichia coli/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Microbiologia Industrial/métodos , Indústria Farmacêutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biossíntese , Hidrólise
4.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615033

RESUMO

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Assuntos
Movimento Celular
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499451

RESUMO

Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.


Assuntos
Moléculas de Adesão de Célula Nervosa , Sialiltransferases , Animais , Moléculas de Adesão de Célula Nervosa/metabolismo , Sialiltransferases/metabolismo , Ácidos Siálicos/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos , Mamíferos/metabolismo
6.
J Sci Food Agric ; 101(6): 2472-2482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33034040

RESUMO

BACKGROUND: Exoinulinase catalyzes the successive removal of individual fructose moiety from the non-reducing end of the inulin molecule, which is useful for biotechnological applications like producing fructan-based non-grain biomass energy and high-fructose syrup. In this study, an exoinulinase (KmINU) from Kluyveromyces marxianus DSM 5418 was tailored for increased catalytic activity and acidic adaptation for inulin hydrolysis processes by rational site-directed mutagenesis. RESULTS: Three mutations, S124Y, N158S and Q215V distal to the catalytic residues of KmINU were designed and heterologously expressed in Pichia pastoris GS115. Compared to the wild-type, S124Y shifted the pH-activity profile towards acidic pH values and increased the catalytic activity and catalytic efficiency by 59% and 99% to 688.4 ± 17.03 s-1 and 568.93 L mmol-1 s-1 , respectively. N158S improved the catalytic activity under acidic pH conditions, giving a maximum value of 464.06 ± 14.06 s-1 on inulin at pH 4.5. Q215V markedly improved the substrate preference for inulin over sucrose by 5.56-fold, and showed catalytic efficiencies of 208.82 and 6.88 L mmol-1 s-1 towards inulin and sucrose, respectively. Molecular modeling and computational docking indicated that structural reorientation may underlie the increased catalytic activity, acidic adaptation and substrate preference. CONCLUSIONS: The KmINU mutants may serve as industrially promising candidates for inulin hydrolysis. Protein engineering of exoinulinase here provides a successful example of the extent to which mutating non-conserved substrate recognition and binding residues distal to the active site can be used for industrial enzyme improvements. © 2020 Society of Chemical Industry.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Kluyveromyces/enzimologia , Ácidos/metabolismo , Catálise , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Inulina/metabolismo , Cinética , Kluyveromyces/química , Kluyveromyces/genética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas
7.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111064

RESUMO

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Imageamento por Ressonância Magnética/métodos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerização , Conformação Proteica , Domínios Proteicos
8.
Prep Biochem Biotechnol ; 44(4): 342-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24320235

RESUMO

cis,cis-Muconic acid (CCMA) is used as a platform chemical for the production of several high-value compounds. For this article, an optimization strategy has been used to optimize medium composition for CCMA production from fairly cheap benzoate by Pseudomonas sp. 1167. The effect of different concentrations of medium components on CCMA production was studied. CCMA yields obtained from Plackett-Burman design (PBD) showed wide variation (3.95-5.87 g/L), and the first-order model indicated that (NH(4))(2)SO(4) (P < 0.01) and K(2)HPO(4) · 3H(2)O (P < 0.02) were the significant components for CCMA production. Then the optimization was performed by steepest ascent design (SAD) and central composite design (CCD), and a validation experiment was conducted to verify the predicted value. The optimal medium composition was: 12 g/L sodium benzoate, 2.5 g/L sodium succinate, 0.7932 g/L (NH(4))(2)SO(4), 1.5612 g/L K(2)HPO(4) · 3H(2)O, 1.2 g/L MgSO(4) · 7H(2)O, 0.4 g/L yeast extract, 0.08 g/L FeCl(3) · 6H(2)O, and 0.08 g/L ethylenediamine tetraacetic acid (EDTA). Under these conditions, a maximum of 7.18 g/L CCMA was produced per 12 g/L benzoate with a highly efficient process within 11 hr and a molecular conversion yield of 61%. Altogether, our results provide valuable insights into nutritional supplementation of CCMA production by using statistical methods, which may benefit a cost-competitive industrial fed-batch fermentation process using a cheap substrate.


Assuntos
Microbiologia Industrial , Pseudomonas/metabolismo , Ácido Sórbico/análogos & derivados , Benzoatos/metabolismo , Simulação por Computador , Meios de Cultura/metabolismo , Fermentação , Microbiologia Industrial/métodos , Modelos Biológicos , Modelos Estatísticos , Mutação , Pseudomonas/genética , Ácido Sórbico/análise , Ácido Sórbico/metabolismo
9.
J Comput Chem ; 33(2): 153-62, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21997880

RESUMO

Cation-π interaction is comparable and as important as other main molecular interaction types, such as hydrogen bond, electrostatic interaction, van der Waals interaction, and hydrophobic interaction. Cation-π interactions frequently occur in protein structures, because six (Phe, Tyr, Trp, Arg, Lys, and His) of 20 natural amino acids and all metallic cations could be involved in cation-π interaction. Cation-π interactions arise from complex physicochemical nature and possess unique interaction behaviors, which cannot be modeled and evaluated by existing empirical equations and force field parameters that are widely used in the molecular dynamics. In this study, the authors present an empirical approach for cation-π interaction energy calculations in protein interactions. The accurate cation-π interaction energies of aromatic amino acids (Phe, Tyr, and Try) with protonated amino acids (Arg and Lys) and metallic cations (Li(+), Na(+), K(+), and Ca(2+)) are calculated using B3LYP/6-311+G(d,p) method as the benchmark for the empirical formulization and parameterization. Then, the empirical equations are built and the parameters are optimized based on the benchmark calculations. The cation-π interactions are distance and orientation dependent. Correspondingly, the empirical equations of cation-π interactions are functions of two variables, the distance r and the orientation angle θ. Two types of empirical equations of cation-π interactions are proposed. One is a modified distance and orientation dependent Lennard-Jones equation. The second is a polynomial function of two variables r and θ. The amino acid-based empirical equations and parameters provide simple and useful tools for evaluations of cation-π interaction energies in protein interactions.


Assuntos
Aminoácidos/química , Metais/química , Modelos Químicos , Proteínas/química , Teoria Quântica , Cátions/química
10.
Amino Acids ; 42(6): 2353-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21822943

RESUMO

Statistical effective energy function (SEEF) is derived from the statistical analysis of the database of known protein structures. Dehouck-Gilis-Rooman (DGR) group has recently created a new generation of SEEF in which the additivity of the energy terms was manifested by decomposing the total folding free energy into a sum of lower order terms. We have tried to optimize the potential function based on their work. By using decoy datasets as screening filter, and through modification of algorithms in calculation of accessible surface area and residue-residue interaction cutoff, four new combinations of the energy terms were found to be comparable to DGR potential in performance test. Most importantly, the term number was reduced from the original 30 terms to only 5 in our results, thereby substantially decreasing the computation time while the performance was not sacrificed. Our results further proved the additivity and manipulability of the DGR original energy function, and our new combination of the energy could be used in prediction of protein structures.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Algoritmos , Modelos Estatísticos , Conformação Proteica , Dobramento de Proteína , Termodinâmica
11.
J Chem Inf Model ; 52(4): 996-1004, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22480344

RESUMO

The inhibitions of enzymes (proteins) are determined by the binding interactions between ligands and targeting proteins. However, traditional QSAR (quantitative structure-activity relationship) is a one-side technique, only considering the structures and physicochemical properties of inhibitors. In this study, the structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) is presented, in which the structural information of host protein is involved in the QSAR calculations. The SB-MP-3D-QSAR actually is a combinational method of docking approach and QSAR technique. Multiple docking calculations are performed first between the host protein and ligand molecules in a training set. In the targeting protein, the functional residues are selected, which make the major contribution to the binding free energy. The binding free energy between ligand and targeting protein is the summation of multiple potential energies, including van der Waals energy, electrostatic energy, hydrophobic energy, and hydrogen-bond energy, and may include nonthermodynamic factors. In the foundational QSAR equation, two sets of weighting coefficients {aj} and {bp} are assigned to the potential energy terms and to the functional residues, respectively. The two coefficient sets are solved by using iterative double least-squares (IDLS) technique in the training set. Then, the two sets of weighting coefficients are used to predict the bioactivities of inquired ligands. In an application example, the new developed method obtained much better results than that of docking calculations.


Assuntos
Algoritmos , Antivirais/química , Neuraminidase/química , Inibidores de Proteases/química , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/química , Sítios de Ligação , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A/química , Vírus da Influenza A/enzimologia , Análise dos Mínimos Quadrados , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Neuraminidase/antagonistas & inibidores , Ligação Proteica , Eletricidade Estática , Termodinâmica , Proteínas Virais/antagonistas & inibidores
12.
J Ind Microbiol Biotechnol ; 38(8): 927-33, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20824485

RESUMO

A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.


Assuntos
Ascomicetos/metabolismo , Etanol/metabolismo , Fermentação , Xilose/metabolismo , Ácido Acético/metabolismo , Adaptação Fisiológica , Arabinose/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Biotecnologia , Celobiose/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
13.
Curr Top Med Chem ; 21(13): 1113-1120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259146

RESUMO

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Sialiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Heparina/química , Humanos , Domínios Proteicos/efeitos dos fármacos , Sialiltransferases/metabolismo
14.
Biotechnol Lett ; 32(12): 1847-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20803163

RESUMO

Kluyveromyces marxianus GX-15 was mutated multiple times by alternately treatment with UV irradiation and NTG for two cycles. Four mutant strains with improved ethanol yield were obtained. The maximum ethanol concentration, ethanol yield coefficient and theoretical ethanol yield of the best mutant strain, GX-UN120, was 69 g/l, 0.46 g/g and 91%, respectively, when fermenting 150 g glucose/l at 40°C. The corresponding values for GX-15 were 58 g/l, 0.39 g/g and 76%, respectively. GX-UN120 grew well in 11% (v/v) of ethanol, while GX-15 could not grow when ethanol was greater than 8% (v/v).


Assuntos
Etanol/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Redes e Vias Metabólicas/genética , Mutagênese , Fermentação , Glucose/metabolismo , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/efeitos da radiação , Dados de Sequência Molecular , Mutagênicos/metabolismo , Nitrosoguanidinas/metabolismo , Análise de Sequência de DNA , Raios Ultravioleta
15.
Appl Biochem Biotechnol ; 192(1): 57-70, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32219624

RESUMO

This study reported simultaneously improved thermostability and hydrolytic pattern of α-amylase from Bacillus subtilis CN7 by rationally engineering the mostly conserved central beta strands in TIM barrel fold. Nine single point mutations and a double mutation were introduced at the 2nd site of the ß7 strand and 3rd site of the ß5 strand to rationalize the weak interactions in the beta strands of the TIM barrel of α-amylase. All the five active mutants changed the compositions and percentages of maltooligosaccharides in final hydrolytic products compared to the product spectrum of the wild-type. A mutant Y204V produced only maltose, maltotriose, and maltopentaose without any glucose and maltotetraose, indicating a conversion from typical endo-amylase to novel maltooligosaccharide-producing amylase. A mutant V260I enhanced the thermal stability by 7.1 °C. To our best knowledge, this is the first report on the simultaneous improvement of thermostability and hydrolytic pattern of α-amylase by engineering central beta strands of TIM barrel and the novel "beta strands" strategy proposed here may be useful for the protein engineering of other TIM barrel proteins.


Assuntos
Bacillus subtilis/enzimologia , Pâncreas/enzimologia , Engenharia de Proteínas/métodos , alfa-Amilases/química , Animais , Aspergillus oryzae , Bacillus amyloliquefaciens , Bacillus licheniformis , Glucose/química , Hidrólise , Maltose/análogos & derivados , Maltose/química , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Mutação Puntual , Estrutura Secundária de Proteína , Pseudoalteromonas , Pyrococcus , Suínos , Temperatura , Trissacarídeos/química
16.
Biochem Biophys Res Commun ; 386(3): 432-6, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19523442

RESUMO

The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structure as well as the 1918 influenza virus H1N1-NA structure, the multiple sequential and structural alignments were performed. It has been revealed that the hydrophobic residue Try347 in H5N1-NA does not match with the hydrophilic carboxyl group of oseltamivir as in the case of H1N1-NA. This may be the reason why H5N1 avian influenza virus is drug-resistant to oseltamivir. The finding provides useful insights for how to modify the existing drugs, such as oseltamivir and zanamivir, making them not only become more effective against H1N1 virus but also effective against H5N1 virus.


Assuntos
Antivirais/química , Farmacorresistência Viral , Inibidores Enzimáticos/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/epidemiologia , Neuraminidase/química , Oseltamivir/química , Sequência de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Dados de Sequência Molecular , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Conformação Proteica
17.
J Comput Chem ; 30(2): 295-304, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18613071

RESUMO

In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus.


Assuntos
Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Animais , Antivirais , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Modelos Teóricos , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/metabolismo
18.
J Theor Biol ; 259(1): 159-64, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19285514

RESUMO

Understanding the mechanism of the M2 proton channel of influenza A is crucially important to both basic research and drug discovery. Recently, the structure was determined independently by high-resolution NMR and X-ray crystallography. However, the two studies lead to completely different drug-binding mechanisms: the X-ray structure shows the drug blocking the pore from inside; whereas the NMR structure shows the drug inhibiting the channel from outside by an allosteric mechanism. Which one of the two is correct? To address this problem, we conducted an in-depth computational analysis. The conclusions drawn from various aspects, such as energetics, the channel-gating dynamic process, the pK(a) shift and its impact on the channel, and the consistency with the previous functional studies, among others, are all in favour to the allosteric mechanism revealed by the NMR structure. The findings reported here may stimulate and encourage new strategies for developing effective drugs against influenza A, particularly in dealing with the drug-resistant problems.


Assuntos
Antivirais/metabolismo , Vírus da Influenza A/química , Modelos Químicos , Proteínas da Matriz Viral/química , Amantadina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Farmacorresistência Viral , Vírus da Influenza A/metabolismo , Ativação do Canal Iônico , Espectroscopia de Ressonância Magnética , Rimantadina/metabolismo , Proteínas da Matriz Viral/metabolismo
19.
J Theor Biol ; 256(3): 428-35, 2009 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18835398

RESUMO

Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.


Assuntos
Desenho de Fármacos , Redes Neurais de Computação , Proteínas/química , Animais , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Relação Estrutura-Atividade
20.
Curr Top Med Chem ; 19(25): 2348-2356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648637

RESUMO

Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.


Assuntos
Acetoína/metabolismo , Produtos Biológicos/metabolismo , Acetoína/química , Produtos Biológicos/química , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA