Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(14): 6180-6184, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35349267

RESUMO

Herein we report an adaptive, achiral trithiourea molecular cage and its conformational and stereodynamics toward tricarboxylate anion binding. The cage was readily synthesized in four steps with a 44% yield for the irreversible cage-forming reaction. It possesses a flexible conformation and strongly binds 1,3,5-benzene tricarboxylate by forming a sandwich-like inclusion complex, with an affinity up to 106 M-1 in acetonitrile. Upon binding, the cage is locked in a twisted helical conformation. By incorporation of three chiral arms on the guest, a gear-like complex dominant in one given helical sense was produced. Due to the steric crowding in the helical grooves, a small change of methyl to ethyl on guest caused a striking difference on binding and chiral induction. The system thus represents a rare example of chiral induction on a flexible, achiral host and provides a decoupled model that the generation of a racemate and following chiral discrimination can be individually probed.


Assuntos
Estereoisomerismo , Conformação Molecular
2.
J Am Chem Soc ; 144(50): 22884-22889, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36480928

RESUMO

Xenon binding represents a formidable challenge, and efficient hosts remain rare. Here we report our findings that while enantiomeric bis(urea)-bis(thiourea) macrocycles form exclusive homochiral dimeric assemblies, xenon is able to overcome the narcissism and induces an otherwise-nonobservable heterochiral assembly as its preferred host. An experimental approach and fitting model were developed to obtain binding constants associated with the invisible assembly species. The determined xenon binding affinity with the heterochiral capsule reaches 1600 M-1, which is 15 times higher than that with the homochiral capsule and represents the highest record for an assembled host. The origin of the large difference in xenon affinity between the two subtle diastereotopic assemblies was revealed by single-crystal analysis. In the heterochiral capsule with S4 symmetry, the xenon atom is more tightly enclosed by van der Waals surroundings of the four thiourea groups arranged in a spherical cross-array, superior to the antiparallel array in the homochiral capsule with D2 symmetry.

3.
Nat Commun ; 11(1): 6257, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288758

RESUMO

Xenon binding has attracted interest due to the potential for xenon separation and emerging applications in magnetic resonance imaging. Compared to their covalent counterparts, assembled hosts that are able to effectively bind xenon are rare. Here, we report a tight yet soft chiral macrocycle dimeric capsule for efficient and adaptive xenon binding in both crystal form and solution. The chiral bisurea-bisthiourea macrocycle can be easily synthesized in multi-gram scale. Through assembly, the flexible macrocycles are locked in a bowl-shaped conformation and buckled to each other, wrapping up a tight, completely sealed yet adjustable cavity suitable for xenon, with a very high affinity for an assembled host. A slow-exchange process and drastic spectral changes are observed in both 1H and 129Xe NMR. With the easy synthesis, modification and reversible characteristics, we believe the robust yet adaptive assembly system may find applications in xenon sequestration and magnetic resonance imaging-based biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA