Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7623-7628, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860722

RESUMO

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.

2.
ACS Nano ; 16(2): 1847-1856, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35025204

RESUMO

Milled nanodiamonds containing nitrogen-vacancy (NV) centers are nanoscale quantum sensors that form colloidal dispersions. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self-assembly. We demonstrate the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size but rather are consistent with heterogeneity in their nanoscale environment.

3.
Nat Commun ; 10(1): 2392, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160564

RESUMO

Quantum emitters such as the diamond nitrogen-vacancy (NV) center are the basis for a wide range of quantum technologies. However, refraction and reflections at material interfaces impede photon collection, and the emitters' atomic scale necessitates the use of free space optical measurement setups that prevent packaging of quantum devices. To overcome these limitations, we design and fabricate a metasurface composed of nanoscale diamond pillars that acts as an immersion lens to collect and collimate the emission of an individual NV center. The metalens exhibits a numerical aperture greater than 1.0, enabling efficient fiber-coupling of quantum emitters. This flexible design will lead to the miniaturization of quantum devices in a wide range of host materials and the development of metasurfaces that shape single-photon emission for coupling to optical cavities or route photons based on their quantum state.

4.
Biomed Opt Express ; 4(7): 1083-90, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847734

RESUMO

Mid-infrared transmission spectroscopy using broadband mid-infrared or Quantum Cascade laser sources is used to predict glucose concentrations of aqueous and serum solutions containing physiologically relevant amounts of glucose (50-400 mg/dL). We employ partial least squares regression to generate a calibration model using a subset of the spectra taken and to predict concentrations from new spectra. Clinically accurate measurements with respect to a Clarke error grid were made for concentrations as low as 30 mg/dL, regardless of background solvent. These results are an important and encouraging step in the work towards developing a noninvasive in vivo glucose sensor in the mid-infrared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA