Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Plant Biol ; 23(1): 419, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691127

RESUMO

BACKGROUND: Strigolactones (SLs) are a recently discovered class of plant hormones. SUPPRESSOR OF MAX2 1 (SMAX1)-like proteins, key component of the SL signaling pathway, have been studied extensively for their roles in regulating plant growth and development, such as plant branching. However, systematic identification and functional characterization of SMXL genes in cotton (Gossypium sp.), an important fiber and oil crop, has rarely been conducted. RESULTS: We identified 210 SMXL genes from 21 plant genomes and examined their evolutionary relationships. The structural characteristics of the SMXL genes and their encoded proteins exhibited both consistency and diversity. All plant SMXL proteins possess a conserved Clp-N domain, P-loop NTPase, and EAR motif. We identified 63 SMXL genes in cotton and classified these into four evolutionary branches. Gene expression analysis revealed tissue-specific expression patterns of GhSMXL genes, with some upregulated in response to GR24 treatment. Protein co-expression network analysis showed that GhSMXL6, GhSMXL7-1, and GhSMXL7-2 mainly interact with proteins functioning in growth and development, while virus-induced gene silencing revealed that GhSMAX1-1 and GhSMAX1-2 suppress the growth and development of axillary buds. CONCLUSIONS: SMXL gene family members show evolutionary diversification through the green plant lineage. GhSMXL6/7-1/7-2 genes play critical roles in the SL signaling pathway, while GhSMXL1-1 and GhSMXL1-2 function redundantly in growth of axillary buds. Characterization of the cotton SMXL gene family provides new insights into their roles in responding to SL signals and in plant growth and development. Genes identified in this study could be used as the candidate genes for improvement of plant architecture and crop yield.


Assuntos
Genoma de Planta , Gossypium , Gossypium/genética , Proteínas de Plantas/genética , Evolução Biológica , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768758

RESUMO

Low Phosphate Root (LPR) encodes a protein localized to the endoplasmic reticulum (ER) and cell wall. This gene plays a key role in responding to phosphate (Pi) deprivation, especially in remodeling the root system architecture (RSA). An identification and expression analysis of the OsLPR family in rice (Oryza sativa) has been previously reported, and OsLPR5, functioning in Pi uptake and translocation, is required for the normal growth and development of rice. However, the role of OsLPR3, one of the five members of this family in rice, in response to Pi deficiency and/or in the regulation of plant growth and development is unknown. Therefore, in this study, the roles of OsLPR3 in these processes were investigated, and some functions were found to differ between OsLPR3 and OsLPR5. OsLPR3 was found to be induced in the leaf blades, leaf sheaths, and roots under Pi deprivation. OsLPR3 overexpression strongly inhibited the growth and development of the rice but did not affect the Pi homeostasis of the plant. However, oslpr3 mutants improved RSA and Pi utilization, and they exhibited a higher tolerance to low Pi stress in rice. The agronomic traits of the oslpr3 mutants, such as 1000-grain weight and seed length, were stimulated under Pi-sufficient conditions, indicating that OsLPR3 plays roles different from those of OsLPR5 during plant growth and development, as well as in the maintenance of the Pi status of rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos/metabolismo , Transporte Biológico , Mutação , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
3.
Genome Res ; 29(2): 261-269, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30651279

RESUMO

Organisms continuously require genetic variation to adapt to fluctuating environments, yet major evolutionary events are episodic, making the relationship between genome evolution and organismal adaptation of considerable interest. Here, by genome-wide comparison of sorghum, maize, and rice SNPs, we investigated reservoirs of genetic variations with high precision. For sorghum and rice, which have not experienced whole-genome duplication in 96 million years or more, tandem duplicates accumulate relatively more SNPs than paralogous genes retained from genome duplication. However, maize, which experienced lineage-specific genome duplication and has a relatively larger supply of paralogous duplicates, shows SNP enrichment in paralogous genes. The proportion of genes showing signatures of recent positive selection is higher in small-scale (tandem and transposed) than genome-scale duplicates in sorghum, but the opposite is true in maize. A large proportion of recent duplications in rice are species-specific; however, most recent duplications in sorghum are derived from ancestral gene families. A new retrotransposon family was also a source of many recent sorghum duplications, illustrating a role in providing variation for genetic innovations. This study shows that diverse evolutionary mechanisms provide the raw genetic material for adaptation in taxa with divergent histories of genome evolution.


Assuntos
Grão Comestível/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Genes de Plantas , Família Multigênica , Oryza/genética , Polimorfismo de Nucleotídeo Único , Retroelementos , Seleção Genética , Sorghum/genética , Sintenia , Zea mays/genética
4.
Yi Chuan ; 44(11): 1044-1055, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384996

RESUMO

Mitogen-activated protein kinase kinase kinases (MAPKKKs) are important components of the MAPK cascade and play crucial roles in development and stress responses. Arabidopsis pumila is an ephemeral Brassicaceae plant growing in Xinjiang desert regions, which possesses salt tolerance. To explore the evolution and function of the MAPKKK gene family in A. pumila, 143 ApMAPKKK genes were identified from A. pumila genome by genome-wide analysis, which were categorized into three subfamilies: ZIK (20), MEKK (36) and RAF (87). There existed 74 and 72 colinear genes between A. thaliana, A. lyrata and A. pumila, respectively, indicating that this gene family expanded obviously in A. pumila genome. Evolutionary analysis revealed that there were 64 duplicated gene pairs with Ka/Ks less than 1, and purifying selection was dominant. RNA-seq data were used to analyze the expression characteristics of ApMAPKKK genes in response to salt stress and in different tissues. The results showed that most ApMAPKKK genes were up-regulated under 250 mmol/L NaCl stress. For example, ApMAPKKK18-1/2 and ApMAPKKK17-1/2 were substantially up-regulated. Tissue expression profiles showed that ApMAPKKK mainly presented six expression patterns. Some duplicated genes were differentially expressed in response to salt stress and in different tissues. These results lay a foundation for further understanding the complex mechanism of MAPKKK gene family transduction pathway in response to abiotic stresses in A. pumila.


Assuntos
Arabidopsis , MAP Quinase Quinase Quinases , Filogenia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Perfilação da Expressão Gênica , Sequência de Aminoácidos
5.
Plant Cell Physiol ; 62(10): 1542-1555, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34245289

RESUMO

In shoot apex cells of rice, a hexameric florigen activation complex (FAC), comprising flowering locus T (FT), 14-3-3 and the basic leucine zipper transcription factor FD, activates downstream target genes and regulates several developmental transitions, including flowering. The allotetraploid cotton (Gossypium hirsutum L.) contains only one FT locus in both of the A- and D-subgenomes. However, there is limited information regarding cotton FACs. Here, we identified a 14-3-3 protein that interacts strongly with GhFT in the cytoplasm and the nuclei, and five FD homoeologous gene pairs were characterized. In vivo, all five GhFD proteins interacted with Gh14-3-3 and GhFT in the nucleus. GhFT, 14-3-3 and all the GhFDs interacted in the nucleus as well, suggesting that they formed a ternary complex. Virus-induced silencing of GhFD1, -2 and -4 in cotton delayed flowering and inhibited the expression of floral meristem identity genes. Silencing GhFD3 strongly decreased lateral root formation, suggesting a function in lateral root development. GhFD overexpression in Arabidopsis and transcriptional activation assays suggested that FACs containing GhFD1 and GhFD2 function mainly in promoting flowering with partial functional redundancy. Moreover, GhFD3 was specifically expressed in lateral root meristems and dominantly activated the transcription of auxin response factor genes, such as ARF19. Thus, the diverse functions of FACs may depend on the recruited GhFD. Creating targeted genetic mutations in the florigen system using Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) genome editing may fine-tune flowering and improve plant architecture.


Assuntos
Proteínas 14-3-3/genética , Florígeno/metabolismo , Gossypium/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Proteínas 14-3-3/metabolismo , Gossypium/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 21(1): 162, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789593

RESUMO

BACKGROUND: In plants, 14-3-3 proteins, also called GENERAL REGULATORY FACTORs (GRFs), encoded by a large multigene family, are involved in protein-protein interactions and play crucial roles in various physiological processes. No genome-wide analysis of the GRF gene family has been performed in cotton, and their functions in flowering are largely unknown. RESULTS: In this study, 17, 17, 31, and 17 GRF genes were identified in Gossypium herbaceum, G. arboreum, G. hirsutum, and G. raimondii, respectively, by genome-wide analyses and were designated as GheGRFs, GaGRFs, GhGRFs, and GrGRFs, respectively. A phylogenetic analysis revealed that these proteins were divided into ε and non-ε groups. Gene structural, motif composition, synteny, and duplicated gene analyses of the identified GRF genes provided insights into the evolution of this family in cotton. GhGRF genes exhibited diverse expression patterns in different tissues. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhGRFs interacted with the cotton FLOWERING LOCUS T homologue GhFT in the cytoplasm and nucleus, while they interacted with the basic leucine zipper transcription factor GhFD only in the nucleus. Virus-induced gene silencing in G. hirsutum and transgenic studies in Arabidopsis demonstrated that GhGRF3/6/9/15 repressed flowering and that GhGRF14 promoted flowering. CONCLUSIONS: Here, 82 GRF genes were identified in cotton, and their gene and protein features, classification, evolution, and expression patterns were comprehensively and systematically investigated. The GhGRF3/6/9/15 interacted with GhFT and GhFD to form florigen activation complexs that inhibited flowering. However, GhGRF14 interacted with GhFT and GhFD to form florigen activation complex that promoted flowering. The results provide a foundation for further studies on the regulatory mechanisms of flowering.


Assuntos
Proteínas 14-3-3/genética , Flores/crescimento & desenvolvimento , Genes de Plantas , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas 14-3-3/metabolismo , Flores/genética , Gossypium/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/metabolismo
7.
Plant Physiol ; 183(1): 277-288, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32102829

RESUMO

Extreme elongation distinguishes about one-fourth of cotton (Gossypium sp.) seed epidermal cells as "lint" fibers, useful for the textile industry, from "fuzz" fibers (<5 mm). Ligon lintless-2 (Li 2 ), a dominant mutation that results in no lint fiber but normal fuzz fiber, offers insight into pathways and mechanisms that differentiate spinnable cotton from its progenitors. A genetic map developed using 1,545 F2 plants showed that marker CISP15 was 0.4 cM from Li 2 , and "dominant" simple sequence repeat (SSR) markers (i.e. with null alleles in the Li 2 genotype) SSR7 and SSR18 showed complete linkage with Li 2 Nonrandom distribution of markers with null alleles suggests that the Li 2 phenotype results from a 176- to 221-kb deletion of the terminal region of chromosome 18 that may have been masked in prior pooled-sample mapping strategies. The deletion includes 10 genes with putative roles in fiber development. Two Glycosyltransferase Family 1 genes showed striking expression differences during elongation of wild-type versus Li 2 fiber, and virus-induced silencing of these genes in the wild type induced Li 2 -like phenotypes. Further, at least 7 of the 10 putative fiber development genes in the deletion region showed higher expression in the wild type than in Li 2 mutants during fiber development stages, suggesting coordinated regulation of processes in cell wall development and cell elongation, consistent with the hypothesis that some fiber-related quantitative trait loci comprise closely spaced groups of functionally diverse but coordinately regulated genes.


Assuntos
Cromossomos Humanos Par 18/metabolismo , Gossypium/metabolismo , Alelos , Cromossomos Humanos Par 18/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Gossypium/genética , Humanos , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561427

RESUMO

Flowering transition is a crucial development process in cotton (Gossypium hirsutum L.), and the flowering time is closely correlated with the timing of FLOWERING LOCUS T (FT) expression. However, the mechanism underlying the coordination of various cis-regulatory elements in the FT promoter of cotton has not been determined. In this study, a 5.9-kb promoter of FT was identified from cotton. A bioinformatics analysis showed that multiple insertion-deletion sites existed in the 5.9-kb promoter. Different expression levels of a reporter gene, and the induction by sequential deletions in GhFT promoter, demonstrated that 1.8-kb of the GhFT promoter was stronger than 4.2-, 4.8-, and 5.9-kb promoter fragments. The binding sites of the CONSTANS (CO) and NUCLEAR FACTOR Y transcription factors were located within the 1.0-kb sequence upstream of the FT transcription start site. A large number of repeat segments were identified in proximal promoter regions (-1.1 to -1.4 kb). A complementation analysis of deletion constructs between 1.0 and 1.8 kb of G. hirsutum, Gossypium arboretum, and Gossypium raimondii FT promoters revealed that the 1.0-kb fragment significantly rescued the late-flowering phenotype of the Arabidopsis FT loss-of-function mutant ft-10, whereas the 1.8-kb promoter only slightly rescued the late-flowering phenotype. Furthermore, the conserved CORE motif in the cotton FT promoter is an atypical TGTG(N2-3)ATG, but the number of arbitrary bases between TGTG and ATG is uncertain. Thus, the proximal FT promoter region might play an important role affecting the activity levels of FT promoters in cotton flowering.


Assuntos
Flores/genética , Gossypium/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Bases , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas , Fatores de Transcrição/química , Transcriptoma
9.
BMC Genomics ; 19(1): 717, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261913

RESUMO

BACKGROUND: Arabidopsis pumila is native to the desert region of northwest China and it is extraordinarily well adapted to the local semi-desert saline soil, thus providing a candidate plant system for environmental adaptation and salt-tolerance gene mining. However, understanding of the salt-adaptation mechanism of this species is limited because of genomic sequences scarcity. In the present study, the transcriptome profiles of A. pumila leaf tissues treated with 250 mM NaCl for 0, 0.5, 3, 6, 12, 24 and 48 h were analyzed using a combination of second-generation sequencing (SGS) and third-generation single-molecule real-time (SMRT) sequencing. RESULTS: Correction of SMRT long reads by SGS short reads resulted in 59,328 transcripts. We found 8075 differentially expressed genes (DEGs) between salt-stressed tissues and controls, of which 483 were transcription factors and 1157 were transport proteins. Most DEGs were activated within 6 h of salt stress and their expression stabilized after 48 h; the number of DEGs was greatest within 12 h of salt stress. Gene annotation and functional analyses revealed that expression of genes associated with the osmotic and ionic phases rapidly and coordinately changed during the continuous salt stress in this species, and salt stress-related categories were highly enriched among these DEGs, including oxidation-reduction, transmembrane transport, transcription factor activity and ion channel activity. Orphan, MYB, HB, bHLH, C3H, PHD, bZIP, ARF and NAC TFs were most enriched in DEGs; ABCB1, CLC-A, CPK30, KEA2, KUP9, NHX1, SOS1, VHA-A and VP1 TPs were extensively up-regulated in salt-stressed samples, suggesting that they play important roles in slat tolerance. Importantly, further experimental studies identified a mitogen-activated protein kinase (MAPK) gene MAPKKK18 as continuously up-regulated throughout salt stress, suggesting its crucial role in salt tolerance. The expression patterns of the salt-responsive 24 genes resulted from quantitative real-time PCR were basically consistent with their transcript abundance changes identified by RNA-Seq. CONCLUSION: The full-length transcripts generated in this study provide a more accurate depiction of gene transcription of A. pumila. We identified potential genes involved in salt tolerance of A. pumila. These data present a genetic resource and facilitate better understanding of salt-adaptation mechanism for ephemeral plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/efeitos dos fármacos , China , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Salinidade , Análise de Sequência de RNA , Estresse Fisiológico
10.
J Exp Bot ; 69(10): 2543-2553, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29547987

RESUMO

In cotton, the formation of fruiting branches affects both plant architecture and fiber yield. Here, we report map-based cloning of the axillary flowering mutation gene (GbAF) that causes bolls to be borne directly on the main plant stem in Gossypium barbadense, and of the clustered boll mutation gene (cl1) in G. hirsutum. Both mutant alleles were found to represent point mutations at the Cl1 locus. Therefore, we propose that the GbAF mutation be referred to as cl1b. These Cl1 loci correspond to homologs of tomato SELF-PRUNING (SP), i.e. Gossypium spp. SP (GoSP) genes. In tetraploid cottons, single monogenic mutation of either duplicate GoSP gene (one in the A and one in the D subgenome) is associated with the axillary cluster flowering phenotype, although the shoot-indeterminate state of the inflorescence is maintained. By contrast, silencing of both GoSPs leads to the termination of flowering or determinate plants. The architecture of axillary flowering cotton allows higher planting density, contributing to increased fiber yield. Taken together the results provide new insights into the underlying mechanism of branching in cotton species, and characterization of GoSP genes may promote the development of compact cultivars to increase global cotton production.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/genética , Gossypium/metabolismo , Mutação , Proteínas de Plantas/metabolismo
11.
J Integr Plant Biol ; 57(6): 522-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25429737

RESUMO

FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcellular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partially rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding.


Assuntos
Gossypium/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Clonagem Molecular , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337940

RESUMO

Brassinazole resistant (BZR) genes act downstream of the brassinosteroid signaling pathway regulating plant growth and development and participating in plant stress responses. However, the BZR gene family has not systematically been characterized in potato. We identified eight BZR genes in Solanum tuberosum, which were distributed among seven chromosomes unequally and were classified into three subgroups. Potato and tomato BZR proteins were shown to be closely related with high levels of similarity. The BZR gene family members in each subgroup contained similar conserved motifs. StBZR genes exhibited tissue-specific expression patterns, suggesting their functional differentiation during evolution. StBZR4, StBZR7, and StBZR8 were highly expressed under white light in microtubers. StBZR1 showed a progressive up-regulation from 0 to 6 h and a progressive down-regulation from 6 to 24 h after drought and salt stress. StBZR1, StBZR2, StBZR4, StBZR5, StBZR6, StBZR7 and StBZR8 were significantly induced from 0 to 3 h under BR treatment. This implied StBZR genes are involved in phytohormone and stress response signaling pathways. Our results provide a theoretical basis for understanding the functional mechanisms of BZR genes in potato.

13.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592751

RESUMO

Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.

14.
Front Genet ; 15: 1364944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686025

RESUMO

Fructose-1, 6-bisphosphate aldolase (FBA) plays vital roles in plant growth, development, and response to abiotic stress. However, genome-wide identification and structural characterization of the potato (Solanum tuberosum L.) FBA gene family has not been systematically analyzed. In this study, we identified nine StFBA gene members in potato, with six StFBA genes localized in the chloroplast and three in the cytoplasm. The analysis of gene structures, protein structures, and phylogenetic relationships indicated that StFBA genes were divided into Class I and II, which exhibited significant differences in structure and function. Synteny analysis revealed that segmental duplication events promoted the expansion of the StFBA gene family. Promoter analysis showed that most StFBA genes contained cis-regulatory elements associated with light and stress responses. Expression analysis showed that StFBA3, StFBA8, and StFBA9 showing significantly higher expression levels in leaf, stolon, and tuber under blue light, indicating that these genes may improve photosynthesis and play an important function in regulating the induction and expansion of microtubers. Expression levels of the StFBA genes were influenced by drought and salt stress, indicating that they played important roles in abiotic stress. This work offers a theoretical foundation for in-depth understanding of the evolution and function of StFBA genes, as well as providing the basis for the genetic improvement of potatoes.

15.
Z Naturforsch C J Biosci ; 68(11-12): 499-508, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601088

RESUMO

Olimarabidopsis pumila is a close relative of the model plant Arabidopsis thaliana but, unlike A. thaliana, it is a salt-tolerant ephemeral plant that is widely distributed in semi-arid and semi-salinized regions of the Xinjiang region of China, thus providing an ideal candidate plant system for salt tolerance gene mining. A good-quality cDNA library was constructed using cap antibody to enrich full-length cDNA with the gateway technology allowing library construction without traditional methods of cloning by use of restriction enzymes. A preliminary analysis of expressed sequence tags (ESTs) was carried out. The titers of the primary and the normalized cDNA library were 1.6 x 10(6) cfu/mL and 6.7 x 10(6) cfu/mL, respectively. A total of 1093 clones were randomly selected from the normalized library for EST sequencing. By sequence analysis, 894 high-quality ESTs were generated and assembled into 736 unique sequences consisting of 72 contigs and 664 singletons. The resulting unigenes were categorized according to the gene ontology (GO) hierarchy. The potential roles of gene products associated with stress-related ESTs are discussed. The 736 unigenes were similar to A. thaliana, A. lyrata, or Thellungiella salsuginea. This research provides an overview of the mRNA expression profile and first-hand information of gene sequence expressed in young leaves of O. pumila.


Assuntos
Arabidopsis/genética , DNA Complementar/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Sequência de Bases , Primers do DNA
16.
Trends Plant Sci ; 28(10): 1178-1191, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37208203

RESUMO

Many newly created early maturing varieties exhibit poor stress resistance and low yield, whereas stress-resistant varieties are typically late maturing. For this reason, the polymerization of early maturity and other desired agronomic qualities requires overcoming the negative connection between early maturity, multi-resistance, and yield, which presents a formidable challenge in current breeding techniques. We review the most salient constraints of early maturity breeding in current crop planting practices and the molecular mechanisms of different maturation timeframes in diverse crops from their origin center to production areas. We explore current breeding tactics and the future direction of crop breeding and the issues that must be resolved to accomplish the polymerization of desirable traits in light of the current obstacles and limitations.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Fenótipo , Produtos Agrícolas/genética , Agricultura
17.
Genes (Basel) ; 14(6)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37372354

RESUMO

CONSTANS-like (COL) genes play important regulatory roles in flowering, tuber formation and the development of the potato (Solanum tuberosum L.). However, the COL gene family in S. tuberosum has not been systematically identified, restricting our knowledge of the function of these genes in S. tuberosum. In our study, we identified 14 COL genes, which were unequally distributed among eight chromosomes. These genes were classified into three groups based on differences in gene structure characteristics. The COL proteins of S. tuberosum and Solanum lycopersicum were closely related and showed high levels of similarity in a phylogenetic tree. Gene and protein structure analysis revealed similarities in the exon-intron structure and length, as well as the motif structure of COL proteins in the same subgroup. We identified 17 orthologous COL gene pairs between S. tuberosum and S. lycopersicum. Selection pressure analysis showed that the evolution rate of COL homologs is controlled by purification selection in Arabidopsis, S. tuberosum and S. lycopersicum. StCOL genes showed different tissue-specific expression patterns. StCOL5 and StCOL8 were highly expressed specifically in the leaves of plantlets. StCOL6, StCOL10 and StCOL14 were highly expressed in flowers. Tissue-specific expression characteristics suggest a functional differentiation of StCOL genes during evolution. Cis-element analysis revealed that the StCOL promoters contain several regulatory elements for hormone, light and stress signals. Our results provide a theoretical basis for the understanding of the in-depth mechanism of COL genes in regulating the flowering time and tuber development in S. tuberosum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum tuberosum , Genes de Plantas , Filogenia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética
18.
Front Plant Sci ; 13: 882583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755647

RESUMO

Cotton is the most important source of natural fiber in the world as well as a key source of edible oil. The plant architecture and flowering time in cotton are crucial factors affecting cotton yield and the efficiency of mechanized harvest. In the model plant arabidopsis, the functions of genes related to plant height, inflorescence structure, and flowering time have been well studied. In the model crops, such as tomato and rice, the similar genetic explorations have greatly strengthened the economic benefits of these crops. Plants of the Gossypium genus have the characteristics of perennials with indeterminate growth and the cultivated allotetraploid cottons, G. hirsutum (Upland cotton), and G. barbadense (Sea-island cotton), have complex branching patterns. In this paper, we review the current progresses in the identification of genes affecting cotton architecture and flowering time in the cotton genome and the elucidation of their functional mechanisms associated with branching patterns, branching angle, fruit branch length, and plant height. This review focuses on the following aspects: (i) plant hormone signal transduction pathway; (ii) identification of cotton plant architecture QTLs and PEBP gene family members; (iii) functions of FT/SFT and SP genes; (iv) florigen and anti-florigen systems. We highlight areas that require further research, and should lay the groundwork for the targeted bioengineering of improved cotton cultivars with flowering times, plant architecture, growth habits and yields better suited for modern, mechanized cultivation.

19.
Genes (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292634

RESUMO

Sugar plays an important role in regulating the flowering of plants. However, studies of genes related to flowering regulation by the sugar pathway of Brassicaceae plants are scarce. In this study, we performed a comprehensive comparative genomics analysis of the flowering genes in the sugar pathway from seven members of the Brassicaceae, including: Arabidopsis thaliana, Arabidopsis lyrata, Astelia pumila, Camelina sativa, Brassica napus, Brassica oleracea, and Brassica rapa. We identified 105 flowering genes in the sugar pathway of these plants, and they were categorized into nine groups. Protein domain analysis demonstrated that the IDD8 showed striking structural variations in different Brassicaceae species. Selection pressure analysis revealed that sugar pathway genes related to flowering were subjected to strong purifying selection. Collinearity analysis showed that the identified flowering genes expanded to varying degrees, but SUS4 was absent from the genomes of Astelia pumila, Camelina sativa, Brassica napus, Brassica oleracea, and Brassica rapa. Tissue-specific expression of ApADG indicated functional differentiation. To sum up, genome-wide identification revealed the expansion, contraction, and diversity of flowering genes in the sugar pathway during Brassicaceae evolution. This study lays a foundation for further study on the evolutionary characteristics and potential biological functions of flowering genes in the sugar pathway of Brassicaceae.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Brassica , Genoma de Planta , Brassica/genética , Açúcares , Genes de Plantas , Arabidopsis/genética , Brassica rapa/genética , Brassica napus/genética
20.
Genes (Basel) ; 13(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36360285

RESUMO

MADS domain transcription factors play roles throughout the whole lifecycle of plants from seeding to flowering and fruit-bearing. However, systematic research into MADS-box genes of the economically important vegetable crop pepper (Capsicum spp.) is still lacking. We identified 174, 207, and 72 MADS-box genes from the genomes of C. annuum, C. baccatum, and C. chinense, respectively. These 453 MADS-box genes were divided into type I (Mα, Mß, Mγ) and type II (MIKC* and MIKCC) based on their phylogenetic relationships. Collinearity analysis identified 144 paralogous genes and 195 orthologous genes in the three Capsicum species, and 70, 114, and 10 MADS-box genes specific to C. annuum, C. baccatum, and C. chinense, respectively. Comparative genomic analysis highlighted functional differentiation among homologous MADS-box genes during pepper evolution. Tissue expression analysis revealed three main expression patterns: highly expressed in roots, stems, leaves, and flowers (CaMADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically expressed in flowers (CaMADS26/CbMADS31/CcMADS11). Protein interaction network analysis showed that type II CaMADS mainly interacted with proteins related to flowering pathway and flower organ development. This study provides the basis for an in-depth study of the evolutionary features and biological functions of pepper MADS-box genes.


Assuntos
Capsicum , Proteínas de Domínio MADS , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Capsicum/genética , Filogenia , Genoma de Planta , Regulação da Expressão Gênica de Plantas/genética , Evolução Molecular , Verduras/genética , Verduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA