Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(23): 10185-10194, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804824

RESUMO

The relaxation of restrictions on Chinese Spring Festival (SF) firework displays in certain regions has raised concerns due to intensive emissions exacerbating air quality deterioration. To evaluate the impacts of fireworks on air quality, a comparative investigation was conducted in a city between 2022 (restricted fireworks) and 2023 SF (unrestricted), utilizing high time-resolution field observations of particle chemical components and air quality model simulations. We observed two severe PM2.5 pollution episodes primarily triggered by firework emissions and exacerbated by static meteorology (contributing approximately 30%) during 2023 SF, contrasting with its absence in 2022. During firework displays, freshly emitted particles containing more primary inorganics (such as chloride and metals like Al, Mg, and Ba), elemental carbon, and organic compounds (including polycyclic aromatic hydrocarbons) were predominant; subsequently, aged particles with more secondary components became prevalent and continued to worsen air quality. The primary emissions from fireworks constituted 54% of the observed high PM2.5 during the displays, contributing a peak hourly PM2.5 concentration of 188 µg/m3 and representing over 70% of the ambient PM2.5. This study underscores that caution should be exercised when igniting substantial fireworks under stable meteorological conditions, considering both the primary and potential secondary effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Férias e Feriados , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Pestic Biochem Physiol ; 200: 105817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582587

RESUMO

Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, ß-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3ß. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.


Assuntos
Condrócitos , MicroRNAs , Condrócitos/metabolismo , Tiram , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética
3.
J Environ Sci (China) ; 138: 32-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135399

RESUMO

The air quality in China has improved significantly in the last decade and, correspondingly, the characteristics of PM2.5 have also changed. We studied the interannual variation of PM2.5 in Chengdu, one of the most heavily polluted megacities in southwest China, during the most polluted season (winter). Our results show that the mass concentrations of PM2.5 decreased significantly year-by-year, from 195.8 ± 91.0 µg/m3 in winter 2016 to 96.1 ± 39.3 µg/m3 in winter 2020. The mass concentrations of organic matter (OM), SO42-, NH4+ and NO3- decreased by 49.6%, 57.1%, 49.7% and 28.7%, respectively. The differential reduction in the concentrations of chemical components increased the contributions from secondary organic carbon and NO3- and there was a larger contribution from mobile sources. The contribution of OM and NO3- not only increased with increasing levels of pollution, but also increased year-by-year at the same level of pollution. Four sources of PM2.5 were identified: combustion sources, vehicular emissions, dust and secondary aerosols. Secondary aerosols made the highest contribution and increased year-by-year, from 40.6% in winter 2016 to 46.3% in winter 2020. By contrast, the contribution from combustion sources decreased from 14.4% to 8.7%. Our results show the effectiveness of earlier pollution reduction policies and emphasizes that priority should be given to key pollutants (e.g., OM and NO3-) and sources (secondary aerosols and vehicular emissions) in future policies for the reduction of pollution in Chengdu during the winter months.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Material Particulado/análise , Estações do Ano , Monitoramento Ambiental , China , Aerossóis/análise
4.
Angew Chem Int Ed Engl ; : e202407736, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735851

RESUMO

We have established a correlation between photocatalytic activity and dynamic structure/bond evolutions of BiOIO3-based photocatalysts during CO2 reduction by combining operando X-ray diffraction with photoelectron spectroscopy. More specifically, the selective photo-deposition of PtOx species on BiOIO3 (010) facets could effectively promote the electron enrichment on Bi active sites of (100) facets for facilitating the adsorption/activation of CO2 molecules, leading to the formation of Bi sites with high oxidation state and the shrink of crystalline structures. With introducing light irradiation to drive CO2 reduction, the Bi active sites with high oxidation states transformed into normal Bi3+ state, accompanying with the expansion of crystalline structures. Owing to the dynamic structure, bond, and chemical-state evolutions, a significant improvement of photocatalytic activity for CO evolution has been achieved on PtOx-BiOIO3 (195.0 µmol g-1 ⋅ h-1), much higher than the pristine (61.9 µmol g-1 ⋅ h-1) as well as metal-Pt decorated BiOIO3 (70.3 µmol g-1 ⋅ h-1) samples. This work provides new insights to correlate the intrinsically dynamic structure/bond evolutions with CO2 reduction activity, which may help to guide future photocatalyst design.

5.
BMC Plant Biol ; 23(1): 633, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066415

RESUMO

BACKGROUND: Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS: In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS: These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.


Assuntos
Gênero Iris , Humanos , Gênero Iris/genética , Gênero Iris/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Tibet , Polimorfismo Genético , Flores/genética , Flores/metabolismo , Cor , Pigmentação/genética
6.
Cancer Cell Int ; 23(1): 151, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525152

RESUMO

BACKGROUND: Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood. METHODS: Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200. RESULTS: Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-ß/Smad expression, then promoted the development of GC. CONCLUSIONS: Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-ß/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC.

7.
J Environ Manage ; 339: 117924, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060693

RESUMO

Several studies have explored the influence of grazing or precipitation addition (PA), two important components of human activities and global climate change on the structure and function of communities. However, the response of communities to a combination of grazing and PA remains largely unexplored. We investigated the impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot design with grazing as the main-plot factor and PA as the split-plot factor. AGB and SR have response threshold value to PA, which was decreased by grazing for AGB, but increased for SR. This indicates that implementing grazing management strategies is conducive to strengthening the protection of biodiversity in arid and semi-arid grasslands. Grazing promoted the AGB-SR coupling of the community by increasing the SR of medium drought tolerance (MD), low drought tolerance, and grazing tolerant functional groups. Grazing also accelerated the AGB-SR decoupling of the community by changing the AGB of high drought tolerance, MD, high grazing tolerance, and medium grazing tolerance functional groups. PA mediated changes in MD and SR of both drought and grazing tolerant functional groups and AGB of low grazing tolerance promoted the coupling of AGB-SR of the community. The Two-dimension functional groups classification method reflects the changes of AGB and SR in communities more reasonable than the division of single-factor functional groups.


Assuntos
Biodiversidade , Pradaria , Humanos , Biomassa , Mudança Climática , Ecossistema
8.
Angew Chem Int Ed Engl ; 62(5): e202213067, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36346191

RESUMO

Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2 O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 µmol cm-2 h-1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2 O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.

9.
Curr Issues Mol Biol ; 44(11): 5622-5637, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421665

RESUMO

The NAC (NAM, ATAF1/2, and CUC2) gene family, one of the largest transcription factor families in plants, acts as positive or negative regulators in plant response and adaption to various environmental stresses, including cold stress. Multiple reports on the functional characterization of NAC genes in Arabidopsis thaliana and other plants are available. However, the function of the NAC genes in the typical woody mangrove (Kandelia obovata) remains poorly understood. Here, a comprehensive analysis of NAC genes in K. obovata was performed with a pluri-disciplinary approach including bioinformatic and molecular analyses. We retrieved a contracted NAC family with 68 genes from the K. obovata genome, which were unevenly distributed in the chromosomes and classified into ten classes. These KoNAC genes were differentially and preferentially expressed in different organs, among which, twelve up-regulated and one down-regulated KoNAC genes were identified. Several stress-related cis-regulatory elements, such as LTR (low-temperature response), STRE (stress response element), ABRE (abscisic acid response element), and WUN (wound-responsive element), were identified in the promoter regions of these 13 KoNAC genes. The expression patterns of five selected KoNAC genes (KoNAC6, KoNAC15, KoNAC20, KoNAC38, and KoNAC51) were confirmed by qRT-PCR under cold treatment. These results strongly implied the putative important roles of KoNAC genes in response to chilling and other stresses. Collectively, our findings provide valuable information for further investigations on the function of KoNAC genes.

10.
J Hepatol ; 76(2): 394-406, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648896

RESUMO

BACKGROUND & AIMS: Currently there is no effective treatment for liver fibrosis, which is one of the main histological determinants of non-alcoholic steatohepatitis (NASH). While Hippo/YAP (Yes-associated protein) signaling is essential for liver regeneration, its aberrant activation frequently leads to fibrosis and tumorigenesis. Unravelling "context-specific" contributions of YAP in liver repair might help selectively bypass fibrosis and preserve the pro-regenerative YAP function in hepatic diseases. METHODS: We used murine liver fibrosis and minipig NASH models, and liver biopsies from patients with cirrhosis. Single-cell RNA-sequencing (scRNA-Seq) was performed, and a G-protein-coupled receptor (GPCR) ligand screening system was used to identify cell-selective YAP inhibitors. RESULTS: YAP levels in macrophages are increased in the livers of humans and mice with liver fibrosis. The increase in type I interferon and attenuation of hepatic fibrosis observed in mice specifically lacking Yap1 in myeloid cells provided further evidence for the fibrogenic role of macrophage YAP. ScRNA-Seq further showed that defective YAP pathway signaling in macrophages diminished a fibrogenic vascular endothelial cell subset that exhibited profibrotic molecular signatures such as angiocrine CTGF and VCAM1 expression. To specifically target fibrogenic YAP in macrophages, we utilized a GPCR ligand screening system and identified a dopamine receptor D2 (DRD2) antagonist that selectively blocked YAP in macrophages but not hepatocytes. Genetic and pharmacological targeting of macrophage DRD2 attenuated liver fibrosis. In a large animal (minipig) NASH model recapitulating human pathology, the DRD2 antagonist blocked fibrosis and restored hepatic architecture. CONCLUSIONS: DRD2 antagonism selectively targets YAP-dependent fibrogenic crosstalk between macrophages and CTGF+VCAM1+ vascular niche, promoting liver regeneration over fibrosis in both rodent and large animal models. LAY SUMMARY: Fibrosis in the liver is one of the main histological determinants of non-alcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes. Our study demonstrates that a macrophage-specific deficiency in Yes-associated protein (YAP) attenuates liver fibrosis. Dopamine receptor D2 (DRD2) antagonism selectively blocks YAP in macrophages and thwarts liver fibrosis in both rodent and large animal models, and thus holds potential for the treatment of NASH.


Assuntos
Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de Dopamina D2/metabolismo , Animais , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Suínos , Proteínas de Sinalização YAP/antagonistas & inibidores , Proteínas de Sinalização YAP/uso terapêutico
11.
Eur J Nucl Med Mol Imaging ; 49(8): 2668-2681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35091755

RESUMO

BACKGROUND: Tumor-derived exosomes (TEX) have shown great potential for drug delivery and tumor targeting. Here, we developed a novel multi-drug loaded exosomes nanoprobe for combined antitumor chemotherapy and photodynamic therapy, and monitoring the drug delivery capabilities with pre-targeting technique. METHODS: TEX of human colorectal cancer HCT116 was prepared, and Doxorubicin and the photodynamic therapy agent 5-aminolevulinic acid (ALA) were loaded and named as TEX@DOX@ALA. Tumor uptake was first examined using fluorescence imaging of the fluorescent dye Cy5 (TEX@DOX@ALA@Cy5). Visualization of exosome aggregation in tumor were realized by positron-emission tomography/computed tomography (PET/CT) with pre-targeting technique. Tumor-bearing mice were first injected with TEX@DOX@ALA labeled with azide (N3) (TEX@DOX@ALA@N3), and then 68Ga-(2,2'-((6-amino-1-(4,7-bis (carboxymethyl)-1,4,7-triazonan-1-yl) hexan-2-yl) azanediyl) diacetic acid-dibenzocyclooctyne (68Ga-L-NETA-DBCO) was injected after 24 h for PET/CT imaging via in vivo click chemistry. For the antitumor therapy with photodynamic and/or chemotherapy, seven groups of tumor-bearing mice with different therapy were monitored, and the tumor size, animal weight and the survival time were recorded. Furthermore, the samples of blood and interested tissues (heart, lung, liver, kidney, and spleen) were harvested for hematological analysis and H&E staining. RESULTS: The drug loading process did not influence the structure or the function of the HCT116 TEX membranes. In a fluorescence imaging experiment, higher fluorescence could be seen in tumor after TEX@DOX@ALA@Cy5 injected, and reached the highest signal at 24 h. From PET/CT images with subcutaneous and orthotopic colon tumor-bearing mice, clear radioactivity could be seen in tumors, which suggested the successes of TEX accumulation in tumors. TEX@DOX@ALA group with photodynamic therapy and chemotherapy had the best tumor inhibition effect compared with the other groups, with the longest survival time (36 days, 37.5%). No significant damage was found on histological observation and the blood biochemical analysis, which suggested the safety of the multi-drug loaded exosomes. CONCLUSIONS: We successfully engineered an exosome-based nanoprobe integrating PET imaging components and therapeutic drugs. This drug-loaded exosome system may effectively target tumors and enable synergistic chemotherapeutic and photodynamic antitumor effects.


Assuntos
Exossomos , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Radioisótopos de Gálio , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
J Nanobiotechnology ; 20(1): 203, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477389

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a promising antitumor strategy with fewer adverse effects and higher selectivity than conventional therapies. Recently, a series of reports have suggested that PDT induced by Cerenkov radiation (CR) (CR-PDT) has deeper tissue penetration than traditional PDT; however, the strategy of coupling radionuclides with photosensitizers may cause severe side effects. METHODS: We designed tumor-targeting nanoparticles (131I-EM@ALA) by loading 5-aminolevulinic acid (ALA) into an 131I-labeled exosome mimetic (EM) to achieve combined antitumor therapy. In addition to playing a radiotherapeutic role, 131I served as an internal light source for the Cerenkov radiation (CR). RESULTS: The drug-loaded nanoparticles effectively targeted tumors as confirmed by confocal imaging, flow cytometry, and small animal fluorescence imaging. In vitro and in vivo experiments demonstrated that 131I-EM@ALA produced a promising antitumor effect through the synergy of radiotherapy and CR-PDT. The nanoparticles killed tumor cells by inducing DNA damage and activating the lysosome-mitochondrial pathways. No obvious abnormalities in the hematology analyses, blood biochemistry, or histological examinations were observed during the treatment. CONCLUSIONS: We successfully engineered a nanocarrier coloaded with the radionuclide 131I and a photosensitizer precursor for combined radiotherapy and PDT for the treatment of breast cancer.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Imagem Óptica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
13.
Atmos Environ (1994) ; 268: 118844, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34776748

RESUMO

In order to investigate the effects of the Coronavirus Disease 2019 (COVID-19) lockdown on air quality in cities in southwest China, a single particle aerosol mass spectrometer (SPAMS) and other online equipments were used to measure the air pollution in Chengdu, one of the megacities in this area, before and during the lockdown period. It was found that the concentrations of fine particulate matter (PM2.5), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO) decreased by 38.6%, 77.5%, 47.0%, 35.1% and 14.1%, respectively, while the concentration of ozone (O3) increased by 57.5% from the time before to the time during lockdown. All particles collected during the study period could be divided into eight categories: biomass burning (BB), coal combustion (CC), vehicle emissions (VE), cooking emissions (CE), Dust, K-nitrate (K-NO3), K-sulfate (K-SO4) and K-sulfate-nitrate (K-SN) particles, and their contributions changed significantly after the beginning of lockdown. Compared to before lockdown, the contribution of VE particles experienced the largest reduction (by 14.9%), whereas the contributions of BB and CE particles increased by 7.0% and 7.3%, respectively, during the lockdown period. Regional transmission was critical for pollution formation before lockdown, whereas the pollution that occurred during the lockdown period was caused mainly by locally emitted particles (such as VE, CE and BB particles). Weighted potential source contribution function (WPSCF) analysis further verified and emphasized the difference in the contribution of regional transmission for pollution formation before and during lockdown. In addition, the potential source area and intensity of the particles emitted from different sources or formation mechanisms were quite different.

14.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209233

RESUMO

Extraction conditions can exert a remarkable influence on extraction efficiency. The aim of this study was to improve the extraction efficiency of carotenoids from Dunaliella parva (D. parva). Dimethyl sulfoxide (DMSO) and 95% ethanol were used as the extraction solvents. The extraction time, extraction temperature and the proportions of mixed solvent were taken as influencing factors, and the experimental scheme was determined by Central Composite Design (CCD) of Design Expert 10.0.4.0 to optimize the extraction process of carotenoids from D. parva. The absorbance values of the extract at 665 nm, 649 nm and 480 nm were determined by a microplate spectrophotometer, and the extraction efficiency of carotenoids was calculated. Analyses of the model fitting degree, variance and interaction term 3D surface were performed by response surface analysis. The optimal extraction conditions were as follows: extraction time of 20 min, extraction temperature of 40 °C, and a mixed solvent ratio (DMSO: 95% ethanol) of 3.64:1. Under the optimal conditions, the actual extraction efficiency of carotenoids was 0.0464%, which was increased by 18.19% (the initial extraction efficiency of 0.03926%) with a lower extraction temperature (i.e., lower energy consumption) compared to the standard protocol.


Assuntos
Carotenoides/química , Carotenoides/isolamento & purificação , Clorofíceas/química , Fracionamento Químico/métodos , Solventes/química
15.
Angew Chem Int Ed Engl ; 61(30): e202204271, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545533

RESUMO

Herein, we demonstrate that the surface anchoring of black phosphorus quantum dots (BPQDs) and bulk iron-doping in W18 O49 nanowires significantly promotes the photocatalytic activity toward N2 fixation into NH3 . More specifically, a NH3 production rate of up to 187.6 µmol g-1 h-1 could be achieved, nearly one order of magnitude higher than that of pristine W18 O49 (18.9 µmol g-1 h-1 ). Comprehensive experiments and density-functional theory calculations reveal that Fe-doping could enhance the reducing ability of photo-generated electrons by decreasing the work function and elevating the defect band (d-band) centers. Additionally, the surface BPQDs anchoring could facilitate the N2 adsorption/activation owing to the increased adsorption energy and advantaged W-P dimer bonding-mode. Therefore, synergizing the surface BPQD anchoring and bulk Fe-doping remarkably enhanced the photocatalytic activity of W18 O49 nanowires for NH3 production.

16.
Biol Proced Online ; 23(1): 2, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413084

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) plays a major role in blood pressure regulation and cardiovascular homeostasis. The wide distribution and multifunctional properties of ACE suggest it's involvement in various pathophysiological conditions. RESULTS: In this study, a novel visual detection method for ACE I/D polymorphisms was designed by integrating direct PCR without the need for DNA extraction using gold magnetic nanoparticles (GMNPs)-based lateral flow assay (LFA) biosensor. The entire detection procedure could enable the genotyping of clinical samples in about 80 min. The detection limit was 0.75 ng and results could be obtained in 5 min using the LFA device. Three hundred peripheral blood samples were analyzed using the direct PCR-LFA system and then verified by sequencing to determine accuracy and repeatability. A clinical preliminary study was then performed to analyze a total of 633 clinical samples. CONCLUSIONS: After grouping based on age, we found a significant difference between the genotypes and the age of patients in the CHD group. The introduction of this method into clinical practice may be helpful for the diagnosis of diseases caused by large fragment gene insertions/deletions.

17.
Planta ; 254(6): 116, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34750674

RESUMO

MAIN CONCLUSION: The novel structural variations were identified in cotton chloroplast tRNAs and gene loss events were more obvious than duplications in chloroplast tRNAs. Transfer RNAs (tRNA) have long been believed an evolutionary-conserved molecular family, which play the key roles in the process of protein biosynthesis in plant life activities. In this study, we detected the evolutionary characteristics and phylogeny of chloroplast tRNAs in cotton plants, an economic and fibered important taxon in the world. We firstly annotated the chloroplast tRNAs of 27 Gossypium species to analyze their genetic composition, structural characteristics and evolution. Compared with the traditional view of evolutionary conservation of tRNA, some novel tRNA structural variations were identified in cotton plants. I.g., tRNAVal-UAC and tRNAIle-GAU only contained one intron in the anti-condon loop region of tRNA secondary structure, respectively. In the variable region, some tRNAs contained a circle structure with a few nucleotides. Interestingly, the calculation result of free energy indicated that the variation of novel tRNAs contributed to the stability of tRNA structure. Phylogenetic analysis suggested that chloroplast tRNAs have evolved from multiple common ancestors, and the tRNAMet seemed to be an ancestral tRNA, which can be duplicated and diversified to produce other tRNAs. The chloroplast tRNAs contained a group I intron in cotton plants, and the evolutionary analysis of introns indicated that group I intron of chloroplast tRNA originated from cyanobacteria. Analysis of gene duplication and loss events showed that gene loss events were more obvious than duplications in Gossypium chloroplast tRNAs. Additionally, we found that the rate of transition was higher than the ones of transversion in cotton chloroplast tRNAs. This study provided new insights into the structural characteristics and evolution of chloroplast tRNAs in cotton plants.


Assuntos
Evolução Molecular , Gossypium , Cloroplastos/genética , Gossypium/genética , Filogenia , RNA de Transferência/genética
18.
World J Surg Oncol ; 19(1): 297, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645481

RESUMO

BACKGROUND: Inflammation markers have an important effect on tumor proliferation, invasion, and metastasis. Oligometastatic disease (OMD) is an intermediate state between widespread metastases and locally confined disease, where curative strategies may be effective for some patients. We aimed to explore the predictive value of inflammatory markers in patients with oligometastatic colorectal cancer (OMCC) and build a nomogram to predict the prognosis of these patients. METHODS: Two hundred nine patients with OMCC were retrospectively collected in this study. The Kaplan-Meier survival curves and Cox regression analysis were used to estimate overall survival (OS) and progression-free survival (PFS). A multivariate Cox analysis model was utilized to establish the nomogram. The concordance index (C-index), calibration curve, and receiver operating characteristics (ROC) were established to verify the validity and accuracy of the prediction model. RESULTS: According to the multivariate analysis, decreased platelet-to-lymphocyte ratio (PLR) might independently improve OS in patients with OMCC (HR = 2.396, 95% CI 1.391-4.126, P = 0.002). Metastases of extra-regional lymph nodes indicated poor OS (HR = 2.472, 95% CI 1.247-4.903, P = 0.010). While the patients with early N stage had better OS (HR = 4.602, 95% CI 2.055-10.305, P = 0.001) and PFS (HR = 2.100, 95% CI 1.364-3.231, P = 0.007). Primary tumor resection (HR = 0.367, 95% CI 0.148-0.908, P = 0.030) and lower fibrinogen (HR = 2.254, 95% CI 1.246-4.078, P = 0.007) could significantly prolong the OS in patients with OMCC. PLR, metastases of extra-regional lymph nodes, N stage, primary tumor resection, and fibrinogen were used to make up the nomogram. The C-index and area under the curve (AUC) of the ROC in nomogram were 0.721 and 0.772 respectively for OS, showed good consistency between predictive probability of OS and actual survival. CONCLUSIONS: Decreased PLR could predict a good prognosis in patients with OMCC. The nomogram including inflammatory factors and clinicopathological markers was credible and accurate to predict survivals in patients with OMCC.


Assuntos
Neoplasias Colorretais , Linfócitos , Plaquetas , Humanos , Nomogramas , Prognóstico , Estudos Retrospectivos
19.
Hemoglobin ; 45(5): 332-334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34957905

RESUMO

We report a novel hemoglobin (Hb) variant found in a Chinese individual from the Guangxi Zhuang Autonomous Region of the People's Republic of China. The proband was a 6-month-old boy who came from Dahua county, Hechi City. Capillary zone electrophoresis (CZE) showed an abnormal peak (51.2%) in zone 13. However, capillary isoelectric focusing electrophoresis (CIFE) presented an unknown peak in zone Bart's (51.4%). High performance liquid chromatography (HPLC) displayed an unknown peak (42.1%) at retention time 2.44 min., eluting before Hb A0. Direct DNA sequencing of the ß-globin gene revealed heterozygosity for a missense mutation at codon 59 (AAG>ATG), causing a lysine to methionine substitution [ß59(E3)Lys→Met; HBB: c.179A>T]. We decided to name the variant Hb Dahua for the place of origin of the proband.


Assuntos
Hemoglobinas Anormais , Globinas beta , China , Cromatografia Líquida de Alta Pressão , Hemoglobinas Anormais/genética , Heterozigoto , Humanos , Lactente , Lisina/genética , Masculino , Mutação , Globinas beta/genética
20.
J Environ Sci (China) ; 100: 1-10, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279022

RESUMO

Following the implementation of the strictest clean air policies to date in Beijing, the physicochemical characteristics and sources of PM2.5 have changed over the past few years. To improve pollution reduction policies and subsequent air quality further, it is necessary to explore the changes in PM2.5 over time. In this study, over one year (2017-2018) field study based on filter sampling (TH-150C; Wuhan Tianhong, China) was conducted in Fengtai District, Beijing, revealed that the annual average PM2.5 concentration (64.8 ± 43.1 µg/m3) was significantly lower than in previous years and the highest PM2.5 concentration occurred in spring (84.4 ± 59.9 µg/m3). Secondary nitrate was the largest source and accounted for 25.7% of the measured PM2.5. Vehicular emission, the second largest source (17.6%), deserves more attention when considering the increase in the number of motor vehicles and its contribution to gaseous pollutants. In addition, the contribution from coal combustion to PM2.5 decreased significantly. During weekends, the contribution from EC and NO3- increased whereas the contributions from SO42-, OM, and trace elements decreased, compared with weekdays. During the period of residential heating, PM2.5 mass decreased by 23.1%, compared with non-heating period, while the contributions from coal combustion and vehicular emission, and related species increased. With the aggravation of pollution, the contribution of vehicular emission and secondary sulfate increased and then decreased, while the contribution of NO3- and secondary nitrate continued to increase, and accounted for 34.0% and 57.5% of the PM2.5 during the heavily polluted days, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA