Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23520, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430369

RESUMO

Fat grafting is a promising technique for correcting soft tissue abnormalities, but oil cyst formation and graft fibrosis frequently impede the therapeutic benefit of fat grafting. The lipolysis of released oil droplets after grafting may make the inflammation and fibrosis in the grafts worse; therefore, by regulating adipose triglyceride lipase (ATGL) via Atglistatin (ATG) and Forskolin (FSK), we investigated the impact of lipolysis on fat grafts in this study. After being removed from the mice and chopped into small pieces, the subcutaneous fat from wild-type C57BL/6J mice was placed in three different solutions for two hours: serum-free cell culture medium, culture medium+FSK (50 µM), and culture medium+ATG (100 µM). Following centrifugation to remove water and free oil droplets, 0.3 mL of the fat particles per mouse was subcutaneously injected into the back of mice. Additionally, the subcutaneous fat grafting area was immediately injected with PBS (control group), ATG (30 mg/kg), and FSK (15 mg/kg) following fat transplantation. Detailed cellular events after grafting were investigated by histological staining, real-time polymerase chain reaction, immunohistochemistry/immunofluorescent staining, and quantification. Two weeks after grafting, grafts treated with ATG showed lower expression of ATGL and decreased mRNA levels of TNFα and IL-6. In contrast, grafts treated with ATG showed elevated expression levels of IL-4 and IL-13 compared to the control grafts. In addition, fewer apoptotic cells and oil cysts were observed in ATG grafts. Meanwhile, a higher CD206+/CD68+ ratio of macrophages and more CD31+ vascular endothelial cells existed in the 2-month ATG grafts. In comparison to the control, ATG treatment improved the volume retention of grafts, and decreased graft fibrosis and oil cyst formation. By preventing oil droplet lipolysis, pharmacological suppression of ATGL shielded adipocytes from lipotoxicity following grafting. Additionally, ATG ameliorated the apoptosis and inflammation brought on by adipocyte death and oil droplet lipolysis in grafted fat. These all indicate that lipolysis inhibition improved transplanted fat survival and decreased the development of oil cysts and graft fibrosis, offering a potential postoperative pharmacological intervention for bettering fat grafting.


Assuntos
Tecido Adiposo , Cistos , Animais , Camundongos , Lipólise , Células Endoteliais , Camundongos Endogâmicos C57BL , Fibrose , Inflamação
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38836288

RESUMO

Major depressive disorder demonstrated sex differences in prevalence and symptoms, which were more pronounced during adolescence. Yet, research on sex-specific brain network characteristics in adolescent-onset major depressive disorder remains limited. This study investigated sex-specific and nonspecific alterations in resting-state functional connectivity of three core networks (frontoparietal network, salience network, and default mode network) and subcortical networks in adolescent-onset major depressive disorder, using seed-based resting-state functional connectivity in 50 medication-free patients with adolescent-onset major depressive disorder and 56 healthy controls. Irrespective of sex, compared with healthy controls, adolescent-onset major depressive disorder patients showed hypoconnectivity between bilateral hippocampus and right superior temporal gyrus (default mode network). More importantly, we further found that females with adolescent-onset major depressive disorder exhibited hypoconnectivity within the default mode network (medial prefrontal cortex), and between the subcortical regions (i.e. amygdala, striatum, and thalamus) with the default mode network (angular gyrus and posterior cingulate cortex) and the frontoparietal network (dorsal prefrontal cortex), while the opposite patterns of resting-state functional connectivity alterations were observed in males with adolescent-onset major depressive disorder, relative to their sex-matched healthy controls. Moreover, several sex-specific resting-state functional connectivity changes were correlated with age of onset, sleep disturbance, and anxiety in adolescent-onset major depressive disorder with different sex. These findings suggested that these sex-specific resting-state functional connectivity alterations may reflect the differences in brain development or processes related to early illness onset, underscoring the necessity for sex-tailored diagnostic and therapeutic approaches in adolescent-onset major depressive disorder.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Rede Nervosa , Caracteres Sexuais , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Adolescente , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem , Idade de Início , Mapeamento Encefálico , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991260

RESUMO

The perceptual dysfunctions have been fundamental causes of cognitive and emotional problems in patients with major depressive disorder. However, visual system impairment in depression has been underexplored. Here, we explored functional connectivity in a large cohort of first-episode medication-naïve patients with major depressive disorder (n = 190) and compared it with age- and sex-matched healthy controls (n = 190). A recently developed individual-oriented approach was applied to parcellate the cerebral cortex into 92 regions of interest using resting-state functional magnetic resonance imaging data. Significant reductions in functional connectivities were observed between the right lateral occipitotemporal junction within the visual network and 2 regions of interest within the sensorimotor network in patients. The volume of right lateral occipitotemporal junction was also significantly reduced in major depressive disorder patients, indicating that this visual region is anatomically and functionally impaired. Behavioral correlation analysis showed that the reduced functional connectivities were significantly associated with inhibition control in visual-motor processing in patients. Taken together, our data suggest that functional connectivity between visual network and sensorimotor network already shows a significant reduction in the first episode of major depressive disorder, which may interfere with the inhibition control in visual-motor processing. The lateral occipitotemporal junction may be a hub of disconnection and may play a role in the pathophysiology of major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Percepção Visual , Rede Nervosa
4.
Stat Med ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922949

RESUMO

The joint analysis of imaging-genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel-wise genome-wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose a bi-clique graph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques and an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel-level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum.

5.
Cereb Cortex ; 33(17): 9908-9916, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429833

RESUMO

Individuals with anxiety and depression symptoms are vulnerable to sleep disturbances. The current study aimed to explore the shared neuro-mechanisms underlying the effect of anxiety and depression symptoms on sleep quality. We recruited a cohort of 92 healthy adults who underwent functional magnetic resonance imaging scanning. We measured anxiety and depression symptoms using the Zung Self-rating Anxiety/Depression Scales and sleep quality using the Pittsburgh Sleep Quality Index. Independent component analysis was used to explore the functional connectivity (FC) of brain networks. Whole-brain linear regression analysis showed that poor sleep quality was associated with increased FC in the left inferior parietal lobule (IPL) within the anterior default mode network. Next, we extracted the covariance of anxiety and depression symptoms using principal component analysis to represent participants' emotional features. Mediation analysis revealed that the intra-network FC of the left IPL mediated the association between the covariance of anxiety and depression symptoms and sleep quality. To conclude, the FC of the left IPL may be a potential neural substrate in the association between the covariance of anxiety and depression symptoms and poor sleep quality, and may serve as a potential intervention target for the treatment of sleep disturbance in the future.

6.
Addict Biol ; 29(4): e13394, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38627958

RESUMO

Individuals with methamphetamine use disorder (MUD) often experience anxiety and depressive symptoms during abstinence, which can worsen the likelihood of relapse. Thus, it is essential to understand the neuro-mechanism behind methamphetamine use and its associated emotional withdrawal symptoms in order to develop effective clinical strategies. This study aimed to evaluate associations between emotional withdrawal symptoms and structural covariance networks (SCNs) based on cortical thickness (CTh) across the brain. The CTh measures were obtained from Tl-weighted MRI data from a sample of 48 males with MUD during abstinence and 48 male healthy controls. The severity of anxiety and depressive symptoms was assessed by the Hamilton Anxiety Scale (HAMA) and depression (HAMD) scales. Two important nodes belonging to the brain reward system, the right rostral anterior cingulate cortex (rACC) and medial prefrontal cortex (medPFC), were selected as seeds to conduct SCNs and modulation analysis by emotional symptoms. MUDs showed higher structural covariance between the right rACC and regions in the dorsal attention, right frontoparietal, auditory, visual and limbic networks. They also displayed higher structural covariance between the right medPFC and regions in the limbic network. Moreover, the modulation analysis showed that higher scores on HAMA were associated with increased covariance between the right rACC and the left parahippocampal and isthmus cingulate cortex in the default mode network. These outcomes shed light on the complex neurobiological mechanisms underlying methamphetamine use and its associated emotional withdrawal symptoms and may provide new insights into the development of effective treatments for MUD.


Assuntos
Emoções , Síndrome de Abstinência a Substâncias , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Síndrome de Abstinência a Substâncias/diagnóstico por imagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-38743107

RESUMO

The amygdala, known for its functional heterogeneity, plays a critical role in the neural mechanism of adolescent major depressive disorder (aMDD). However, changes in its subregional functional networks in relation to stressful factors remain unclear. We recruited 78 comorbidity-free, medication-naive aMDD patients and 40 matched healthy controls (HC) to explore changes in resting-state functional connectivity (FC) across four amygdala subregions: the centromedial nucleus (CM), the basolateral nucleus (LB), the superficial nucleus (SF), and the amygdalostriatal transition area (Astr). Then, we performed partial correlation analysis to investigate the relationship between amygdala subregional FC and stressful factors as measured by the Chinese Version of Family Environment Scale (FES-CV) and the Adolescent Self-Rated Life Events Scale (ASLEC). Compared to HC, aMDD patients demonstrated significantly decreased functional connectivity between the left CM and left precentral gyrus, as well as between left SF and left precentral gyrus, and between left LB and posterior cingulate gyrus (PCC)/precuneus. In aMDD group, left CM-precentral gyrus FC exhibited negative correlation with interpersonal relationship and punishment, and positive correlation with family cohesion and expressiveness. This study reveals distinct patterns of abnormal functional connectivity among amygdala subregions in aMDD. Our findings suggest that the CM network, in particular, may be involved in stress-related factors in aMDD, which provide a potential target for the prevention and treatment of adolescent depression.

8.
Int Wound J ; 21(4): e14873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629589

RESUMO

This review aims to synthesize current knowledge on the incidence, characteristics and management of wounds and injuries among professional ice hockey athletes, with the specific focus on the emerging population of Chinese female players. An extensive literature search was conducted across several databases to gather data on injury patterns and wounds, causes, severity and prevention strategies in ice hockey. Special attention was given to studies involving female athletes and unique challenges faced by players in developing regions like China. The review also examined the impact of training modalities, protective equipment and medical interventions on injury rates. The findings reveal a significant seasonal fluctuation in wound incidence, with marked reduction following the preseason period. This trend underscores the effectiveness of adjusted training programmes and essential role of medical teams in injury prevention and rehabilitation. Analysis did not show significant difference in wound rates between technical and physical training sessions, suggesting that injuries are pervasive risk across all training activities. Skating, collisions and inadequate warm-ups were identified as the leading causes of wounds, highlighting areas for targeted preventive measures. The distribution of wounds across various body regions pointed to knee, lower back and wrist as the most vulnerable sites, necessitating focused protection and training adjustments. Ice hockey, particularly among female athletes in China, presents complex injury landscape characterized by the wide range of wounds. The study emphasizes the necessity of comprehensive, multidisciplinary approach to injury prevention that includes training modifications, enhanced protective gear and strategic medical oversight. By addressing the specific causes and patterns of injuries identified, stakeholders can better protect athletes from the inherent risks of the sport, promote safer play and extend career longevity.


Assuntos
Atletas , Hóquei , Feminino , Humanos , China/epidemiologia , Hóquei/lesões , Incidência , Extremidade Inferior , Masculino
9.
Front Neuroendocrinol ; 66: 100992, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35278579

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with abnormal communication among large-scale brain networks, revealed by resting-state functional connectivity (rsFC), with inconsistent results between studies. We performed a meta-analysis of seed-based rsFC studies to identify consistent network connectivity alterations. Thirty-three datasets from 30 studies (1014 T2DM patients and 902 healthy controls [HC]) were included. Seed coordinates and between-group effects were extracted, and the seeds were divided into networks based on their location. Compared to HC, T2DM patients showed hyperconnectivity and hypoconnectivity within the DMN, DMN hypoconnectivity with the affective network (AN), ventral attention network (VAN) and frontal parietal network, and DMN hyperconnectivity with the VAN and visual network. T2DM patients also showed AN hypoconnectivity with the somatomotor network and hyperconnectivity with the VAN. T2DM illness durations negatively correlated with within-DMN rsFC. These DMN-centered impairments in large-scale brain networks in T2DM patients may help to explain the cognitive deficits associated with T2DM.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
10.
Hum Brain Mapp ; 44(2): 779-789, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206321

RESUMO

Although a large number of case-control statistical and machine learning studies have been conducted to investigate structural brain changes in schizophrenia, how best to measure and characterize structural abnormalities for use in classification algorithms remains an open question. In the current study, a convolutional 3D autoencoder specifically designed for discretized volumes was constructed and trained with segmented brains from 477 healthy individuals. A cohort containing 158 first-episode schizophrenia patients and 166 matched controls was fed into the trained autoencoder to generate auto-encoded morphological patterns. A classifier discriminating schizophrenia patients from healthy controls was built using 80% of the samples in this cohort by automated machine learning and validated on the remaining 20% of the samples, and this classifier was further validated on another independent cohort containing 77 first-episode schizophrenia patients and 58 matched controls acquired at a different resolution. This specially designed autoencoder allowed a satisfactory recovery of the input. With the same feature dimension, the classifier trained with autoencoded features outperformed the classifier trained with conventional morphological features by about 10% points, achieving 73.44% accuracy and 0.8 AUC on the internal validation set and 71.85% accuracy and 0.77 AUC on the external validation set. The use of features automatically learned from the segmented brain can better identify schizophrenia patients from healthy controls, but there is still a need for further improvements to establish a clinical diagnostic marker. However, with a limited sample size, the method proposed in the current study shed insight into the application of deep learning in psychiatric disorders.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Algoritmos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
11.
Hum Brain Mapp ; 44(6): 2254-2265, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36661276

RESUMO

Theta burst stimulation (TBS) has been widely used in the treatment of mental disorders, but the cerebral functional difference between intermittent TBS (iTBS) and continuous TBS (cTBS) after one single session of stimulation is not clear. Here we applied resting-state functional magnetic resonance imaging (RS-FMRI) to evaluate the alterations in intrinsic brain activity after iTBS and cTBS in the precuneus. We recruited 32 healthy young adults and performed a single session each of iTBS and cTBS at a 1-week interval. RS-fMRI was collected at baseline before and immediately after the stimulation. Parameters for regional brain activity (ALFF/fALFF/ReHo) and functional connectivity (FC) with the stimulated site of the precuneus after iTBS and cTBS were calculated and compared between each stimulation using a paired t-test. Correlation analysis among those parameters was calculated to explore whether changes in functional connectivity were associated with local spontaneous activity. After iTBS stimulation, fALFF increased in the bilateral precuneus, while fALFF decreased in the bilateral middle temporal gyrus. Reductions in precuneus FC were found in the bilateral cuneus, superior occipital gyrus, superior temporal gyrus, precentral gyrus, and postcentral gyrus, which correlated with regional activity. After cTBS, fALFF decreased in the bilateral insula, and precuneus FC was decreased in the bilateral inferior occipital gyrus and increased in the thalamus. In the current study, we observed that one session of iTBS or cTBS could cause inhibitory effects in remote brain regions, but only iTBS caused significant local activation in the target region.


Assuntos
Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Adulto Jovem , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/diagnóstico por imagem , Encéfalo , Córtex Somatossensorial/fisiologia
12.
J Transl Med ; 21(1): 45, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698183

RESUMO

BACKGROUND: Deterioration of normal intestinal epithelial cells is crucial for colorectal tumorigenesis. However, the process of epithelial cell deterioration and molecular networks that contribute to this process remain unclear. METHODS: Single-cell data and clinical information were downloaded from the Gene Expression Omnibus (GEO) database. We used the recently proposed dynamic network biomarker (DNB) method to identify the critical stage of epithelial cell deterioration. Data analysis and visualization were performed using R and Cytoscape software. In addition, Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis was used to identify potential transcription factors, and CellChat analysis was conducted to evaluate possible interactions among cell populations. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set variation analysis (GSVA) analyses were also performed. RESULTS: The trajectory of epithelial cell deterioration in adenoma to carcinoma progression was delineated, and the subpopulation of pre-deteriorated epithelial cells during colorectal cancer (CRC) initialization was identified at the single-cell level. Additionally, FOS/JUN were identified as biomarkers for pre-deteriorated epithelial cell subpopulations in CRC. Notably, FOS/JUN triggered low expression of P53-regulated downstream pro-apoptotic genes and high expression of anti-apoptotic genes through suppression of P53 expression, which in turn inhibited P53-induced apoptosis. Furthermore, malignant epithelial cells contributed to the progression of pre-deteriorated epithelial cells through the GDF signaling pathway. CONCLUSIONS: We demonstrated the trajectory of epithelial cell deterioration and used DNB to characterize pre-deteriorated epithelial cells at the single-cell level. The expression of DNB-neighboring genes and cellular communication were triggered by DNB genes, which may be involved in epithelial cell deterioration. The DNB genes FOS/JUN provide new insights into early intervention in CRC.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células Epiteliais/metabolismo , Adenoma/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica
13.
J Child Psychol Psychiatry ; 64(2): 244-253, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36000340

RESUMO

BACKGROUND: Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder. Integrity of white matter microstructure plays a key role in the neural mechanism of ADHD presentations. However, the relationships between specific behavioural dimensions and white matter microstructure are less well known. This study aimed to identify associations between white matter and a broad set of clinical features across children and adolescent with and without ADHD using a data-driven multivariate approach. METHOD: We recruited a total of 130 children (62 controls and 68 ADHD) and employed regularized generalized canonical correlation analysis to characterize the associations between white matter and a comprehensive set of clinical measures covering three domains, including symptom, cognition and behaviour. We further applied linear discriminant analysis to integrate these associations to explore potential developmental effects. RESULTS: We delineated two brain-behaviour dimensional associations in each domain resulting a total of six multivariate patterns of white matter microstructural alterations linked to hyperactivity-impulsivity and mild affected; executive functions and working memory; externalizing behaviour and social withdrawal, respectively. Apart from executive function and externalizing behaviour sharing similar white matter patterns, all other dimensions linked to a specific pattern of white matter microstructural alterations. The multivariate dimensional association scores showed an overall increase and normalization with age in ADHD group while remained stable in controls. CONCLUSIONS: We found multivariate neurobehavioral associations exist across ADHD and controls, which suggested that multiple white matter patterns underlie ADHD heterogeneity and provided neural bases for more precise diagnosis and individualized treatment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Branca , Humanos , Criança , Adolescente , Substância Branca/diagnóstico por imagem , Encéfalo , Função Executiva , Cognição
14.
Eur Child Adolesc Psychiatry ; 32(11): 2363-2374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115899

RESUMO

Alterations in resting-state functional connectivity (rsFC) of hippocampus and orbitofrontal cortex (OFC) have been highly implicated in major depressive disorder (MDD) and the researches have penetrated to the subregional level. However, relatively little is known about the intrinsic connectivity patterns of these two regions in adolescent MDD (aMDD), especially that of their functional subregions. Therefore, in the current study, we recruited 68 first-episode drug-naive aMDD patients and 43 matched typically developing controls (TDC) to characterize the alterations of whole-brain rsFC patterns in hippocampus and OFC at both regional and subregional levels in aMDD. The definition of specific functional subregions in hippocampus and OFC were based on the prior functional clustering-analysis results. Furthermore, the relationship between rsFC alterations and clinical features was also explored. Compared to TDC group, aMDD patients showed decreased connectivity of the left whole hippocampus with bilateral OFC and right inferior temporal gyrus at the regional level and increased connectivity between one of the right hippocampal subregions and right posterior insula at the subregional level. Reduced connectivity of OFC was only found in the subregion of left OFC with left anterior insula extending to lenticula in aMDD patients relative to TDC group. Our study identifies that the aberrant hippocampal and orbitofrontal rsFC was predominantly located in the insular cortex and could be summarized as an altered hippo-orbitofrontal-insular circuit in aMDD, which may be the unique features of brain network dysfunction in depression at this particular age stage. Moreover, we observed the distinct rsFC alterations in adolescent depression at the subregional level, especially the medial and lateral OFC.

15.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630335

RESUMO

Lithium batteries incorporating LiFePO4 (LFP) as the cathode material have gained significant attention in recent research. However, the limited electronic and ionic conductivity of LFP poses challenges to its cycling performance and overall efficiency. In this study, we address these issues by synthesizing a series of LiFePO4/carbon (LFP/C) composites through low-temperature carbonization coating of LFP in the presence of Coke as the carbon source. The resulting lithium batteries utilizing LFP/C as the cathode material exhibited impressive discharge specific capacities of 148.35 mA·h/g and 126.74 mA·h/g at 0.1 C and 1 C rates, respectively. Even after 200 cycles of charging and discharging, the capacities remained remarkably high, with values of 93.74% and 97.05% retention, showcasing excellent cycling stability. Notably, the LFP/C composite displayed exceptional rate capability, and capacity retention of 99.27% after cycling at different multiplication rates. These findings underscore the efficacy of in situ low-temperature carbonization capping of LFP with Coke in significantly improving both the cycling stability and rate capability of lithium batteries.

16.
Molecules ; 28(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985749

RESUMO

Traditional graphite anode material typically shows a low theoretical capacity and easy lithium decomposition. Molybdenum disulfide is one of the promising anode materials for advanced lithium-ion batteries, which possess low cost, unique two-dimensional layered structure, and high theoretical capacity. However, the low reversible capacity and the cycling-capacity retention rate induced by its poor conductivity and volume expansion during cycling blocks further application. In this paper, a collaborative control strategy of monodisperse MoS2/graphite composites was utilized and studied in detail. MoS2/graphite nanocomposites with different ratios (MoS2:graphite = 20%:80%, 40%:60%, 60%:40%, and 80%:20%) were prepared by mechanical ball-milling and low-temperature annealing. The graphite sheets were uniformly dispersed between the MoS2 sheets by the ball-milling process, which effectively reduced the agglomeration of MoS2 and simultaneously improved the electrical conductivity of the composite. It was found that the capacity of MoS2/graphite composites kept increasing along with the increasing percentage of MoS2 and possessed the highest initial discharge capacity (832.70 mAh/g) when MoS2:graphite = 80%:20%. This facile strategy is easy to implement, is low-cost, and is cosmically produced, which is suitable for the development and manufacture of advance lithium-ion batteries.

17.
Hum Brain Mapp ; 43(7): 2391-2399, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170143

RESUMO

Brain networks exhibit signatures of modular structure, which maintains a fine trade-off between wiring cost and efficiency of information transmission. Alterations in modular structure have been found in patients with obsessive-compulsive disorder (OCD). However, previous studies were focused on a single scale (i.e., modularity or intra/intermodular connectivity) for investigation. Here, we recruited 92 OCD patients and 90 healthy controls. A comprehensive analysis was performed on modular architecture alterations in the voxelwise functional connectome at the "global" (modularity), "meso" (modular segregation and within- and between-module connections), and "local" (participation coefficients, PC) scales. We also examined the correlation between modular structure metrics and clinical symptoms. The findings revealed that (1) there was no significant group difference in global modularity; (2) both primary modules (visual network, sensorimotor network) and high-order modules (dorsal attention network, frontoparietal network) exhibited lower modular segregation in OCD patients, which was mainly driven by increased numbers of between-module connections; and (3) OCD patients showed higher PC in several connectors including the bilateral middle occipital gyri, left medial orbital frontal gyrus, left superior frontal gyrus, left posterior cingulate gyrus, right superior temporal gyrus and right middle frontal gyrus, and lower PC in the right lingual gyrus. Moreover, these alterations in modular structure were associated with clinical symptoms in patients. Our findings provide further insights into the involvement of different modules in functional network dysfunction in OCD from a connectomic perspective and suggest a synergetic mechanism of module interactions that may be related to the pathophysiology of OCD.


Assuntos
Conectoma , Transtorno Obsessivo-Compulsivo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Córtex Pré-Frontal
18.
Hum Brain Mapp ; 43(4): 1256-1264, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797010

RESUMO

Altered topological organization of brain structural covariance networks has been observed in attention deficit hyperactivity disorder (ADHD). However, results have been inconsistent, potentially related to confounding medication effects. In addition, since structural networks are traditionally constructed at the group level, variabilities in individual structural features remain to be well characterized. Structural brain imaging with MRI was performed on 84 drug-naïve children with ADHD and 83 age-matched healthy controls. Single-subject gray matter (GM) networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared using nonparametric permutation testing. Compared with healthy subjects, GM networks in ADHD patients demonstrated significantly altered topological characteristics, including higher global and local efficiency and clustering coefficient, and shorter path length. In addition, ADHD patients exhibited abnormal centrality in corticostriatal circuitry including the superior frontal gyrus, orbitofrontal gyrus, medial superior frontal gyrus, precentral gyrus, middle temporal gyrus, and pallidum (all p < .05, false discovery rate [FDR] corrected). Altered global and nodal topological efficiencies were associated with the severity of hyperactivity symptoms and the performance on the Stroop and Wisconsin Card Sorting Test tests (all p < .05, FDR corrected). ADHD combined and inattention subtypes were differentiated by nodal attributes of amygdala (p < .05, FDR corrected). Alterations in GM network topologies were observed in drug-naïve ADHD patients, in particular in frontostriatal loops and amygdala. These alterations may contribute to impaired cognitive functioning and impulsive behavior in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Substância Cinzenta/patologia , Rede Nervosa/patologia , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Criança , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem
19.
J Magn Reson Imaging ; 55(4): 1141-1150, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34549480

RESUMO

BACKGROUND: Depression is a common psychiatric disorder affecting 264 million people globally, and the worst outcome is suicide. While regional brain alterations in depressed suicidal brain have previously been reported, knowledge about white matter (WM) microstructure is limited. PURPOSE: Automated fiber quantification (AFQ) acquired by magnetic resonance imaging was used to calculate diffusion properties of fiber tracks to explore the structural alteration of WM associated with suicidality in depressive patients. STUDY TYPE: Cross-sectional. SUBJECTS: Forty-five depressive patients without suicidality (DS- group, 60.00% females), 53 depressed patients with suicidality (DS+ group, 66.04% females), and 59 healthy controls (HC group, 67.80% females). FIELD STRENGTH/SEQUENCE: 3.0 T; single-shot echo-planar imaging sequence. ASSESSMENT: The point-wise group difference of the fiber tracts was determined by diffusion properties including fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of 18 specific WM tracts. STATISTICAL TESTS: Analysis of covariance (ANCOVA) and partial correlation analysis were used. A threshold of P < 0.05 was considered statistically significant. RESULTS: The significantly different diffusion properties were found in callosum forceps, left inferior fronto-occipital fasciculus (IFOF), right anterior thalamic radiation (ATR), and left cingulum cingulate in DS- and DS+ groups. The correlation analysis results showed that MD of right ATR was significantly positively correlated with Hamilton Depression Rating Scale (HAMD) scores (r = 0.363). In addition, AD of right ATR (r = 0.372), MD of callosum forceps minor (r = 0.511), RD of left IFOF (r = 0.429), and RD of callosum forceps minor (r = 0.515) were significantly positively correlated with suicide item scores of HAMD. DATA CONCLUSION: Our demonstration of decreased WM tract integrity including callosum forceps, IFOF, and ATR confirms the central involvement of the frontal cortex and limbic system with suicidality in depression. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Suicídio , Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Ideação Suicida , Substância Branca/diagnóstico por imagem
20.
Biometrics ; 78(4): 1566-1578, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374075

RESUMO

Group-level brain connectome analysis has attracted increasing interest in neuropsychiatric research with the goal of identifying connectomic subnetworks (subgraphs) that are systematically associated with brain disorders. However, extracting disease-related subnetworks from the whole brain connectome has been challenging, because no prior knowledge is available regarding the sizes and locations of the subnetworks. In addition, neuroimaging data are often mixed with substantial noise that can further obscure informative subnetwork detection. We propose a likelihood-based adaptive dense subgraph discovery (ADSD) model to extract disease-related subgraphs from the group-level whole brain connectome data. Our method is robust to both false positive and false negative errors of edge-wise inference and thus can lead to a more accurate discovery of latent disease-related connectomic subnetworks. We develop computationally efficient algorithms to implement the novel ADSD objective function and derive theoretical results to guarantee the convergence properties. We apply the proposed approach to a brain fMRI study for schizophrenia research and identify well-organized and biologically meaningful subnetworks that exhibit schizophrenia-related salience network centered connectivity abnormality. Analysis of synthetic data also demonstrates the superior performance of the ADSD method for latent subnetwork detection in comparison with existing methods in various settings.


Assuntos
Encefalopatias , Conectoma , Humanos , Funções Verossimilhança , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA