Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275754

RESUMO

High-voltage cables are the main arteries of urban power supply. Cable accessories are connecting components between different sections of cables or between cables and other electrical equipment. The stress in the cold shrink tube of cable accessories is a key parameter to ensure the stable operation of the power system. This paper attempts to explore a method for measuring the stress in the cold shrink tube of high-voltage cable accessories based on ultrasonic longitudinal wave attenuation. Firstly, a pulse ultrasonic longitudinal wave testing system based on FPGA is designed, where the ultrasonic sensor operates in a single-transmit, single-receive mode with a frequency of 3 MHz, a repetition frequency of 50 Hz, and a data acquisition and transmission frequency of 40 MHz. Then, through experiments and theoretical calculations, the transmission and attenuation characteristics of ultrasonic longitudinal waves in multi-layer elastic media are studied, revealing an exponential relationship between ultrasonic wave attenuation and the thickness of the cold shrink tube. Finally, by establishing a theoretical model of the radial stress of the cold shrink tube, using the thickness of the cold shrink tube as an intermediate variable, an effective measurement of the stress of the cold shrink tube was achieved.

2.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676145

RESUMO

The state detection of power cables is very important to ensure the reliability of the power supply. Traditional sensors are mostly based on electric field detection. The operation is complex, and its efficiency needs to be improved. This paper optimizes the design and development of the magnetic field detection sensor for AC power cables. First, through the establishment of the magnetic field sensor model, it is determined that permalloy is the material of the magnetic core, the optimal aspect ratio of the magnetic core is 20, and the ratio of coil length to core length is 0.3. Second, the coil-simulation model is established, and it is determined that the optimal number of turns of the coil is 11,000 turns, the diameter of the enameled copper wire is 0.08 mm, and the equivalent magnetic field noise of the sensor is 0.06 pT. Finally, the amplifying circuit based on negative magnetic flux feedback is designed, the sensor is assembled, and the experimental circuit is built for the sensitivity test. The results show that the sensitivity of the magnetic field sensor is 327.6 mV/µT. The sensor designed in this paper has the advantages of small size, high sensitivity, ease of carry, and high reliability.

3.
Comput Intell Neurosci ; 2022: 4719266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251149

RESUMO

Optimization of machining parameters is an important problem in the modern manufacturing world due to production efficiency and economics. This problem is well known to be complex and is regarded as a strongly nondeterministic polynomial (NP)-hard problem. To reduce the production cost of work-pieces in computer numerical control (CNC) machining, a novel optimization algorithm based on a combination of the bat algorithm and a divide-and-conquer strategy is proposed. First, the basic bat algorithm (BA) is modified with the aim to avoid finding the local optimal solution. In addition, a Gaussian quantum bat algorithm with direction of mean best position is developed. Second, in order to reduce the complexity of the optimization problem, the whole optimization problem is divided into several subproblems by using a divide-and-conquer strategy according to the characteristic of multipass turning operations. Finally, under a large number of machining constraints, the cutting parameters of the two stages of roughing and finishing are simultaneously optimized. Simulation results show that the proposed algorithm can find better combinations of the machining parameters than other algorithms proposed previously to further reduce the production cost. In addition, the outcome of our work presents a novel way to solve the complex optimization problem of machining parameters with a combination of traditional mathematical methods and swarm intelligence algorithms.


Assuntos
Algoritmos , Simulação por Computador , Distribuição Normal
4.
Comput Intell Neurosci ; 2019: 5652340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827493

RESUMO

Quantum-behaved bat algorithm with mean best position directed (QMBA) is a novel variant of bat algorithm (BA) with good performance. However, the QMBA algorithm generates all stochastic coefficients with uniform probability distribution, which can only provide a relatively small search range, so it still faces a certain degree of premature convergence. In order to help bats escape from the local optimum, this article proposes a novel Gaussian quantum bat algorithm with mean best position directed (GQMBA), which applies Gaussian probability distribution to generate random number sequences. Applying Gaussian distribution instead of uniform distribution to generate random coefficients in GQMBA is an effective technique to promote the performance in avoiding premature convergence. In this article, the combination of QMBA and Gaussian probability distribution is applied to solve the numerical function optimization problem. Nineteen benchmark functions are employed and compared with other algorithms to evaluate the accuracy and performance of GQMBA. The experimental results show that, in most cases, the proposed GQMBA algorithm can provide better search performance.


Assuntos
Algoritmos , Animais , Comportamento Animal , Quirópteros , Modelos Estatísticos , Teoria Quântica
5.
Comput Intell Neurosci ; 2017: 3235720, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634487

RESUMO

Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.


Assuntos
Algoritmos , Quirópteros/fisiologia , Simulação por Computador , Animais , Biomimética , Ecolocação , Heurística , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA