Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888170

RESUMO

Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.

2.
Bioconjug Chem ; 35(2): 164-173, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38113481

RESUMO

Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qß (mQß), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQß-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQß-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQß-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.


Assuntos
Analgésicos Opioides , Heroína , Camundongos , Animais , Analgésicos Opioides/farmacologia , Heroína/química , Heroína/farmacologia , Morfina , Derivados da Morfina , Imunoglobulina G
3.
Haematologica ; 109(4): 1053-1068, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37794799

RESUMO

6-mercaptopurine (6-MP) serves as the backbone in the maintenance regimens of acute lymphoblastic leukemia (ALL). We aimed to evaluate the influence of NUDT15 gene polymorphism on the risk of myelosupression, hepatotoxicity and interruption of 6-MP, as well as treatment efficacy and dose of 6-MP in ALL patients. A total of 24 studies with 3,374 patients were included in this meta-analysis. We found 9-fold higher risk of 6-MP induced leukopenia (odds ratio [OR] =9.00, 95% confidence interval [CI]: 3.73-21.74) and 2.5-fold higher risk of 6-MP-induced neutropenia (OR=2.52, 95% CI: 1.72-3.69) for NUDT15 c.415C>T variant carriers in the dominant model. Moreover, we found that the dose intensity of 6-MP in ALL patients with one NUDT15 c.415C>T variant alleles (CT) was 19% less than that in wild-type patients (CC) (mean differences: 19.43%, 95% CI: -25.36 to -13.51). The tolerable dose intensity of 6-MP in NUDT15 c.415C>T homozygote variant (TT) and heterozygote variant (CT) carriers was 49% and 15% less than that in wild-type patients, respectively. The NUDT15 c.415C>T variant group (CT+TT) had seven times (OR=6.98, 95% CI: 2.83-17.22) higher risk of developing 6-MP intolerance than the CC group. However, NUDT15 c.415C>T polymorphism did not appear significantly associated with hepatotoxicity, treatment interruption or relapse incidence. We concluded that NUDT15 c.415C>T was a good predictor for 6-MP-induced myelosuppression in ALL patients. The dose intensity of 6-MP in ALL patients with NUDT15 c.415C>T variants was significantly lower than that in wild-type patients. This research provided a basis for further investigation into relations between NUDT15 gene and adverse reaction, treatment efficacy and dose intensity of 6-MP.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neutropenia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/efeitos adversos , Pirofosfatases/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Polimorfismo Genético , Neutropenia/genética , Resultado do Tratamento , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
4.
Semin Immunol ; 47: 101390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31982247

RESUMO

Tumor associated carbohydrate antigens (TACAs) are a class of attractive antigens for the development of anti-cancer immunotherapy. Besides monoclonal antibodies and vaccines, chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs) targeting TACA are exciting directions to harness the power of the immune system to fight cancer. In this review, we focus on two TACAs, i.e., the GD2 ganglioside and the mucin-1 (MUC1) protein. The latest advances in CAR T cells and bispecific antibodies targeting these two antigens are presented. The roles of co-stimulatory molecules, structures of the sequences for antigen binding, methods for CAR and antibody construction, as well as strategies to enhance solid tumor penetration and reduce T cell exhaustion and death are discussed. Furthermore, approaches to reduce "on target, off tumor" side effects are introduced. With further development, CAR T cells and BsAbs targeting GD2 and MUC1 can become powerful agents to effectively treat solid tumor.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Epitopos/genética , Epitopos/imunologia , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/química , Gangliosídeos/imunologia , Humanos , Mucina-1/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética
5.
Angew Chem Int Ed Engl ; : e202405671, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781001

RESUMO

Proteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established. To expedite CSPG synthesis, the peptide acceptor was immobilized on solid phase and the glycan units were directly installed enzymatically onto the peptide. Subsequent enzymatic chain elongation and sulfation led to the successful synthesis of CSPG glycopeptides. The CS dodecasaccharide glycopeptide was the longest homogeneous CS glycopeptide synthesized to date. The enzymatic synthesis was much more efficient than the chemical synthesis of the corresponding CS glycopeptides, which could reduce the total number of synthetic steps by 80%. The structures of the CS glycopeptides were confirmed by mass spectrometry analysis and NMR studies. In addition, the interactions between the CS glycopeptides and cathepsin G were studied. The sulfation of glycan chain was found to be important for binding with cathepsin G. This efficient chemoenzymatic strategy opens new avenues to investigate the structures and functions of PGs.

6.
J Biol Chem ; 298(10): 102468, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087840

RESUMO

The immune system produces a diverse collection of antiglycan antibodies that are critical for host defense. At present, however, we know very little about the binding properties, origins, and sequences of these antibodies because of a lack of access to a variety of defined individual antibodies. To address this challenge, we used a glycan microarray with over 800 different components to screen a panel of 516 human monoclonal antibodies that had been randomly cloned from different B-cell subsets originating from healthy human subjects. We obtained 26 antiglycan antibodies, most of which bound microbial carbohydrates. The majority of the antiglycan antibodies identified in the screen displayed selective binding for specific glycan motifs on our array and lacked polyreactivity. We found that antiglycan antibodies were about twice as likely than expected to originate from IgG+ memory B cells, whereas none were isolated from naïve, early emigrant, or immature B cells. Therefore, our results indicate that certain B-cell subsets in our panel are enriched in antiglycan antibodies, and IgG+ memory B cells may be a promising source of such antibodies. Furthermore, some of the newly identified antibodies bound glycans for which there are no reported monoclonal antibodies available, and these may be useful as research tools, diagnostics, or therapeutic agents. Overall, the results provide insight into the types and properties of antiglycan antibodies produced by the human immune system and a framework for the identification of novel antiglycan antibodies in the future.


Assuntos
Anticorpos Monoclonais , Polissacarídeos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Carboidratos , Imunoglobulina G/imunologia , Análise em Microsséries , Polissacarídeos/metabolismo , Células B de Memória/imunologia
7.
Chemistry ; 29(2): e202202083, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36424188

RESUMO

Phosphatidylinositol phosphate kinases (PIPKs) produce lipid signaling molecules and have been attracting increasing attention as drug targets for cancer, neurodegenerative diseases, and viral infection. Given the potential cross-inhibition of kinases and other ATP-utilizing enzymes by ATP-competitive inhibitors, targeting the unique lipid substrate binding site represents a superior strategy for PIPK inhibition. Here, by taking advantage of the nearly identical stereochemistry between myo-inositol and D-galactose, we designed and synthesized a panel of D-galactosyl lysophospholipids, one of which was found to be a selective substrate of phosphatidylinositol 4-phosphate 5-kinase. Derivatization of this compound led to the discovery of a human PIKfyve inhibitor with an apparent IC50 of 6.2 µM, which significantly potentiated the inhibitory effect of Apilimod, an ATP-competitive PIKfyve inhibitor under clinical trials against SARS-CoV-2 infection and amyotrophic lateral sclerosis. Our results provide the proof of concept that D-galactose-based phosphoinositide mimetics can be developed into artificial substrates and new inhibitors of PIPKs.


Assuntos
COVID-19 , Fosfatos , Humanos , Galactose , Lisofosfolipídeos , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis/metabolismo , SARS-CoV-2/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
8.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420732

RESUMO

Dense video caption is a task that aims to help computers analyze the content of a video by generating abstract captions for a sequence of video frames. However, most of the existing methods only use visual features in the video and ignore the audio features that are also essential for understanding the video. In this paper, we propose a fusion model that combines the Transformer framework to integrate both visual and audio features in the video for captioning. We use multi-head attention to deal with the variations in sequence lengths between the models involved in our approach. We also introduce a Common Pool to store the generated features and align them with the time steps, thus filtering the information and eliminating redundancy based on the confidence scores. Moreover, we use LSTM as a decoder to generate the description sentences, which reduces the memory size of the entire network. Experiments show that our method is competitive on the ActivityNet Captions dataset.

9.
Angew Chem Int Ed Engl ; 62(1): e202211985, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173931

RESUMO

Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.


Assuntos
Heparitina Sulfato , Oligossacarídeos , Oligossacarídeos/química , Heparitina Sulfato/química , Ligação Proteica , Ácido Glucurônico/metabolismo , Glucosamina
10.
Angew Chem Int Ed Engl ; 62(47): e202309744, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37781858

RESUMO

Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qß. Mouse immunization with the Qß-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qß-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qß-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.


Assuntos
Bacteriófagos , Vacinas Anticâncer , Neoplasias , Camundongos , Humanos , Animais , Antígeno CA-19-9 , Vacinas Anticâncer/química , Imunoglobulina G/metabolismo
11.
Opt Express ; 30(14): 24898-24908, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237033

RESUMO

Nonsequential double ionization (NSDI) of Argon atoms by counter-rotating two-color elliptically polarized (TCEP) fields is investigated with a three-dimensional classical ensemble model. Different from two-color circularly polarized fields, the combined electric field in TCEP pulses has no symmetry and the ionized electron mainly returns to the parent ion from one direction. Thus the electron momentum distributions show strong asymmetry. Numerical results show with the increase of the relative phase between the two elliptical fields, the return angle of the travelling electron, i.e., the angle between the return direction of the electron and the +x direction, gradually decreases. Moreover, the dominant behavior of electron pairs evolves from anti-correlation to correlation with the relative phase increasing. This provides an avenue to control the return angle and electron correlation behavior by the relative phase between the two elliptical fields.

12.
Bioorg Med Chem ; 74: 117066, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283250

RESUMO

Pertussis is a highly contagious respiratory disease caused by the Gram-negative bacterial pathogen, Bordetella pertussis. Despite high global vaccination rates, pertussis is resurging worldwide. Here we discuss the development of current pertussis vaccines and their limitations, which highlight the need for new vaccines that can protect against the disease and prevent development of the carrier state, thereby reducing transmission. The lipo-oligosaccharide of Bp is an attractive antigen for vaccine development as the anti-glycan antibodies could have bactericidal activities. The structure of the lipo-oligosaccharide has been determined and its immunological properties analyzed. Strategies enabling the expression, isolation, and bioconjugation have been presented. However, obtaining the saccharide on a large scale with high purity remains one of the main obstacles. Chemical synthesis provides a complementary approach to accessing the carbohydrate epitopes in a pure and structurally well-defined form. The first total synthesis of the non-reducing end pertussis pentasaccharide is discussed. The conjugate of the synthetic glycan with a powerful immunogenic carrier, bacteriophage Qß, results in high levels and long-lasting anti-glycan IgG antibodies, paving the way for the development of a new generation of anti-pertussis vaccines with high bactericidal activities and biocompatibilities.


Assuntos
Anticorpos Antibacterianos , Coqueluche , Humanos , Vacina contra Coqueluche , Bordetella pertussis , Coqueluche/prevenção & controle , Oligossacarídeos/química
13.
Angew Chem Int Ed Engl ; 61(48): e202209730, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36199167

RESUMO

Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure-activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS-like pseudo-hexasaccharide library, where HS disaccharides were linked in a "head-to-tail" fashion from the reducing end of a disaccharide module to the non-reducing end of a neighboring module. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF-2) with similar structure-activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head-to-tail linked pseudo-oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.


Assuntos
Dissacarídeos , Heparitina Sulfato , Heparitina Sulfato/química , Dissacarídeos/química , Oligossacarídeos/química , Relação Estrutura-Atividade , Ligação Proteica
14.
Adv Funct Mater ; 31(41): 2105059, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34512228

RESUMO

Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.

15.
Opt Express ; 29(18): 29576-29586, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34615066

RESUMO

Electron correlation in nonsequential double ionization (NSDI) of molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that the two electrons from NSDI of molecules in counter-rotating TCCP fields show strong angular correlation and the angular correlation behavior sensitively depends on the internuclear distance. With the internuclear distance increasing, the dominant behavior of electron pairs evolves from correlation to anti-correlation. It leaves a clear imprint on the ion momentum distributions, which exhibit an inverted Y-shape distribution at a small internuclear distance and a triangle-shape distribution at a large internuclear distance. Back analysis indicates that the asymmetric electron energy sharing by soft recollision and longer time delay of double ionization are responsible for more anti-correlated emissions at large internuclear distances.

16.
Org Biomol Chem ; 19(15): 3374-3378, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899899

RESUMO

Proteoglycans (PGs) play important roles in many biological processes including tumor progression, cell adhesion, and regulation of growth factor activities. With glycosaminoglycan chains attached to the core proteins in nature, PGs are highly challenging synthetic targets due to the difficulties in integrating the sulfated glycans with the peptide backbone. To expedite the synthesis, herein, the utility of human xylosyltransferase I (XT-I), the enzyme responsible for initiating PG synthesis, has been explored. XT-I was found to be capable of efficiently installing the xylose unit onto a variety of peptide structures on mg scales. Furthermore, an unnatural sugar, i.e., 6-azidoglucose can be transferred by XT-I introducing a reactive handle onto the glycopeptide for selective functionalization. XT-I can be coupled with ß-4-galactosyl transferase-7 for one pot synthesis of glycopeptides bearing galactose-xylose disaccharide, paving the way toward efficient chemoenzymatic synthesis of PG glycopeptides and glycoproteins.


Assuntos
Pentosiltransferases/metabolismo , Proteoglicanas/biossíntese , Humanos , Conformação Proteica , Proteoglicanas/química , UDP Xilose-Proteína Xilosiltransferase
17.
Org Biomol Chem ; 19(11): 2448-2455, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33645601

RESUMO

MUC1 glycopeptides are attractive antigens for anti-cancer vaccine development. One potential drawback in using the native MUC1 glycopeptide for vaccine design is the instability of the O-glycosyl linkage between the glycan and the peptide backbone to glycosidase. To overcome this challenge, a MUC1 glycopeptide mimic has been synthesized with the galactose-galactosamine disaccharide linked with threonine (Thomsen-Friedenreich or Tf antigen) through an unnatural ß-glycosyl bond. The resulting MUC1-ß-Tf had a much-enhanced stability toward a glycosidase capable of cleaving the glycan from the corresponding MUC1 glycopeptide with the natural α-Tf linkage. The MUC1-ß-Tf was subsequently conjugated with a powerful carrier bacteriophage Qß. The conjugate induced high levels of IgG antibodies in clinically relevant human MUC1 transgenic mice, which cross-recognized not only the natural MUC1-α-Tf glycopeptide but also MUC1 expressing tumor cells, supporting the notion that a simple switch of the stereochemistry of the glycan/peptide linkage can be a strategy for anti-cancer vaccine epitope design for glycopeptides.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Vacinas Anticâncer/química , Glicopeptídeos/química , Mucina-1/química , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dissacarídeos/química , Desenho de Fármacos , Galactosamina/química , Galactose/química , Humanos , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Camundongos , Camundongos Transgênicos , Mucina-1/imunologia
18.
Angew Chem Int Ed Engl ; 60(45): 24179-24188, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34469031

RESUMO

Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qß. Mouse immunization with the Qß-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qß-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.


Assuntos
Vacinas Anticâncer/química , Gangliosídeos/síntese química , Vacinas Conjugadas/química , Acetamidas/química , Acetamidas/imunologia , Acetilação , Animais , Vacinas Anticâncer/imunologia , Configuração de Carboidratos , Gangliosídeos/química , Gangliosídeos/imunologia , Hidrólise , Camundongos , Ácidos Neuramínicos/química , Ácidos Neuramínicos/imunologia , Desenvolvimento de Vacinas , Vacinas Conjugadas/imunologia
19.
Opt Express ; 28(7): 10505-10514, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225633

RESUMO

Relative phase effect of nonsequential double ionization (NSDI) of aligned molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results show that NSDI yield in counter-rotating TCCP fields sensitively depends on the relative phase of the two components, which exhibits a sin-like behavior with the period of π/2. NSDI yield achieves its maximum at the relative phase π/8 and minimum at 3π/8. Back analysis indicates the recollision time and the return angle of the electron strongly depend on the relative phase of the two components, which results in the dominant emission direction of the electrons, is different for different relative phases. This indicates that the recollision process can be steered by changing the relative phase of the two components in counter-rotating TCCP laser fields. Meantime, it provides an avenue to obtain information about the recollision time and the return angle in the recollision process from the electron momentum distribution.

20.
Chemistry ; 26(68): 15953-15968, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32578281

RESUMO

With the emergence of multidrug resistant Salmonella strains, the development of anti-Salmonella vaccines is an important task. Currently there are no approved vaccines against Salmonella Paratyphi A, the leading cause of paratyphoid fever. To fill this gap, oligosaccharides corresponding to the O-polysaccharide repeating units from the surface of Salmonella Paratyphi A have been synthesized through convergent stereoselective glycosylations. The synthetic glycan antigen was conjugated with a powerful immunogenic carrier system, the bacteriophage Qß. The resulting construct was able to elicit strong and long-lasting anti-glycan IgG antibody responses, which were highly selective toward Salmonella Paratyphi A associated glycans. The availability of well-defined glycan antigen enabled the determination that one repeating unit of the polysaccharide is sufficient to induce protective antibodies, and the paratose residue and/or the O-acetyl modifications on the backbone are important for recognition by antibodies elicited by a Qß-tetrasaccharide conjugate. Immune sera provided excellent protection to mice from lethal challenge with Salmonella Paratyphi A, highlighting the potential of the synthetic glycan-based vaccine.


Assuntos
Oligossacarídeos , Febre Paratifoide , Salmonella paratyphi A , Vacinas Tíficas-Paratíficas , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Camundongos , Oligossacarídeos/imunologia , Febre Paratifoide/prevenção & controle , Salmonella paratyphi A/imunologia , Vacinas Tíficas-Paratíficas/administração & dosagem , Vacinas Tíficas-Paratíficas/química , Vacinas Sintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA