Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559986

RESUMO

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/química , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Camundongos Endogâmicos NOD , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Oncogenes , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tamoxifeno/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo
2.
PLoS Biol ; 12(3): e1001819, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24667498

RESUMO

Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.


Assuntos
Neoplasias do Colo/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroxilação , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
3.
J Biol Chem ; 288(27): 19633-42, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23720754

RESUMO

SET8 (SET domain containing 8) is a histone H4 lysine 20 (H4K20)-specific monomethyltransferase in higher eukaryotes that exerts diverse functions in transcription regulation, DNA repair, tumor metastasis, and genome integrity. The activity of SET8 is tightly controlled during cell cycle through post-translational modifications, including ubiquitination, phosphorylation, and sumoylation. However, how the expression of SET8 is regulated is not fully understood. Here, we report that microRNA-7 is a negative regulator of SET8. We demonstrated that microRNA-7 inhibits H4K20 monomethylation and suppresses epithelial-mesenchymal transition and the invasive potential of breast cancer cells. We showed that microRNA-7 promotes spontaneous DNA damages and sensitizes cells to induced DNA damages. Our experiments provide a molecular mechanism for the regulation of SET8 and extend the biological function of microRNA-7 to DNA damage response, supporting the pursuit of microRNA-7 as a potential target for breast cancer intervention.


Assuntos
Neoplasias da Mama/metabolismo , Dano ao DNA , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
4.
J Biol Chem ; 286(6): 4226-35, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21127074

RESUMO

The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G(1) arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation.


Assuntos
Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/fisiologia , Apoptose/fisiologia , Complexo do Signalossomo COP9 , Linhagem Celular Tumoral , Proteínas F-Box/genética , Fase G1/fisiologia , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fosforilação/fisiologia , Estabilidade Proteica , Proteínas Ligases SKP Culina F-Box/genética , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/genética
5.
Nat Cell Biol ; 22(6): 728-739, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367049

RESUMO

The crosstalk between deregulated hepatocyte metabolism and cells within the tumour microenvironment, as well as the consequent effects on liver tumorigenesis, are not completely understood. We show here that hepatocyte-specific loss of the gluconeogenic enzyme fructose 1,6-bisphosphatase 1 (FBP1) disrupts liver metabolic homeostasis and promotes tumour progression. FBP1 is universally silenced in both human and murine liver tumours. Hepatocyte-specific Fbp1 deletion results in steatosis, concomitant with activation and senescence of hepatic stellate cells (HSCs), exhibiting a senescence-associated secretory phenotype. Depleting senescent HSCs by 'senolytic' treatment with dasatinib/quercetin or ABT-263 inhibits tumour progression. We further demonstrate that FBP1-deficient hepatocytes promote HSC activation by releasing HMGB1; blocking its release with the small molecule inflachromene limits FBP1-dependent HSC activation, the subsequent development of the senescence-associated secretory phenotype and tumour progression. Collectively, these findings provide genetic evidence for FBP1 as a metabolic tumour suppressor in liver cancer and establish a critical crosstalk between hepatocyte metabolism and HSC senescence that promotes tumour growth.


Assuntos
Carcinogênese/patologia , Proliferação de Células , Senescência Celular , Frutose-Bifosfatase/fisiologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/patologia , Animais , Carcinogênese/metabolismo , Feminino , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 11(1): 498, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980651

RESUMO

Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.


Assuntos
Glutamina/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Camundongos , Nucleosídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcoma/diagnóstico por imagem , Sarcoma/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tomografia Computadorizada por Raios X
7.
Cell Metab ; 31(1): 174-188.e7, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31761563

RESUMO

The remarkable cellular and genetic heterogeneity of soft tissue sarcomas (STSs) limits the clinical benefit of targeted therapies. Here, we show that expression of the gluconeogenic isozyme fructose-1,6-bisphosphatase 2 (FBP2) is silenced in a broad spectrum of sarcoma subtypes, revealing an apparent common metabolic feature shared by diverse STSs. Enforced FBP2 expression inhibits sarcoma cell and tumor growth through two distinct mechanisms. First, cytosolic FBP2 antagonizes elevated glycolysis associated with the "Warburg effect," thereby inhibiting sarcoma cell proliferation. Second, nuclear-localized FBP2 restrains mitochondrial biogenesis and respiration in a catalytic-activity-independent manner by inhibiting the expression of nuclear respiratory factor and mitochondrial transcription factor A (TFAM). Specifically, nuclear FBP2 colocalizes with the c-Myc transcription factor at the TFAM locus and represses c-Myc-dependent TFAM expression. This unique dual function of FBP2 provides a rationale for its selective suppression in STSs, identifying a potential metabolic vulnerability of this malignancy and possible therapeutic target.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células/genética , Frutose-Bifosfatase/metabolismo , Glicólise/genética , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo , Doxiciclina/farmacologia , Feminino , Frutose-Bifosfatase/genética , Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glicólise/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sarcoma/enzimologia , Sarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Dis Model Mech ; 11(8)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29991493

RESUMO

The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment.


Assuntos
Enzimas/metabolismo , Animais , Núcleo Celular/enzimologia , Terapia Enzimática , Regulação da Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Modelos Biológicos , Complexos Multiproteicos/metabolismo
10.
Sci Signal ; 8(375): ra42, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25943352

RESUMO

Receptor tyrosine kinase (RTK) signaling promotes the growth and progression of glioblastoma (GBM), a highly aggressive type of brain tumor. We previously reported that decreased miR-218 expression in GBM directly promotes RTK activity by increasing the expression of key RTKs and their signaling mediators, including the RTK epidermal growth factor receptor (EGFR), phospholipase C-γ1 (PLCγ1), and the kinases PIK3CA and ARAF. However, increased RTK signaling usually activates negative feedback mechanisms to maintain homeostasis. We found that decreased miR-218 expression in GBM cells also increased the expression of genes encoding additional upstream and downstream components of RTK signaling pathways, including the RTK platelet-derived growth factor receptor α (PDGFRα) and the kinases ribosomal S6 kinase 2 (RSK2) and S6 kinase 1 (S6K1), that collectively overrode the negative feedback mechanism. Furthermore, increased RTK signaling itself suppressed miR-218 expression. Mass spectrometry and DNA pull-down identified binding of signal transducer and activator of transcription 3 (STAT3) along with the transcriptional repressor BCL2-associated transcription factor 1 (BCLAF1) directly to the miR-218 locus. These data identify previously unknown feedback loops by which miR-218 repression promotes increased RTK signaling in high-grade gliomas.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Curr Cancer Drug Targets ; 13(9): 973-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24168185

RESUMO

Epithelial-mesenchymal transition (EMT) is a vital process implemented in embryo development, organ fibrosis, and cancer metastasis. Several transcription factors and signaling pathways impinge on the transcriptional program of the cell, leading to the change of cell phenotype without alteration of genotype. Accumulating evidence suggests that epigenetic mechanisms play important roles in inducing EMT and orchestrating the heredity and reversibility of EMT. In this review, we discuss how DNA methylation, histone modifications, and microRNAs (miRNAs) act in a concerted manner to regulate EMT. 'Epigenetic therapies'-inhibitors of DNA methyltransferases and histone deacetylases as well as microRNAs are emerging as promising agents for cancer intervention.


Assuntos
Transição Epitelial-Mesenquimal/genética , Metilação de DNA , Epigênese Genética , Histonas/genética , Humanos , MicroRNAs/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA