Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Int ; 183: 108403, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224651

RESUMO

Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Estudos Retrospectivos , Monitoramento Ambiental/métodos , Espectrometria de Massas em Tandem , Compostos Orgânicos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 568: 1018-1025, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27363346

RESUMO

Understanding the composition of crude oil and its changes with weathering is essential when assessing its provenience, fate, and toxicity. High-resolution mass spectrometry (HRMS) has provided the opportunity to address the complexity of crude oil by assigning molecular formulae, and sorting compounds into "classes" based on heteroatom content. However, factors such as suppression effects and discrimination towards certain components severely limit a truly comprehensive mass spectrometric characterization, and, despite the availability of increasingly better mass spectrometers, a complete characterization of oil still represents a major challenge. In order to fully comprehend the significance of class abundances, as well as the nature and identity of compounds detected, a good understanding of the ionization efficiency of the various compound classes is indispensable. The current study, therefore, analyzed model compounds typically found in crude oils by high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), in order to provide a better understanding of benefits and drawbacks of each source. The findings indicate that, overall, APPI provides the best results, being able to ionize the broadest range of compounds, providing the best results with respect to ionization efficiencies, and exhibiting the least suppression effects. However, just like in the other two sources, in APPI several factors have shown to affect the ionization efficiency of petroleum model compounds. The main such factor is the presence or absence of functional groups that can be easily protonated/deprotonated, in addition to other factors such as size, methylation level, presence of heteroatoms, and ring structure. Overall, this study evidences the intrinsic limitations and benefits of each of the three sources, and should provide the fundamental knowledge required to expand the power of crude oil analysis by high-resolution mass spectrometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA