Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 187(17): 4690-4712.e30, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39142281

RESUMO

Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.


Assuntos
Potenciais de Ação , Dinoprostona , Células de Schwann , Células Receptoras Sensoriais , Animais , Células de Schwann/metabolismo , Dinoprostona/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
2.
Chemistry ; 29(1): e202202565, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36193681

RESUMO

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS-targeted ligands as potential therapeutic agents.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Sítio Alostérico , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Regulação Alostérica
3.
J Chem Phys ; 157(8): 084706, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050022

RESUMO

The interaction of thin evaporating fluid films with solids is studied using the example of water on LiTaO3 (LTO). Adsorption energies are computed by ab initio density functional theory (DFT) and used to calculate the Gibbs free energy of adsorption of water on LTO. Integrating the disjoining pressure, consisting of molecular and structural components, with respect to film thickness gives an expression for the Gibbs free energy. In this way, parameters for the disjoining pressure can be calculated by fitting its integral to the Gibbs free energy computed by ab initio DFT. A combination of literature-known models for spin drying and evaporation is utilized to describe the temporal evolution of the water layer. The vapor above the water layer is modeled by diffusion and a mass balance is applied at the water-air interface. For thick initial layers, an analytical approximation is derived which only depends on fluid and ambient conditions but not on the substrate properties.

4.
Angew Chem Int Ed Engl ; 61(12): e202116782, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936714

RESUMO

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.


Assuntos
Receptores CCR , Receptores Acoplados a Proteínas G , Sítio Alostérico , Ligantes , Receptores CCR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
ACS Pharmacol Transl Sci ; 7(5): 1533-1545, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751637

RESUMO

The membrane protein family of G protein-coupled receptors (GPCRs) represents a major class of drug targets. Over the last years, the presence of additional intracellular binding sites besides the canonical orthosteric binding pocket has been demonstrated for an increasing number of GPCRs. Allosteric modulators harnessing these pockets may represent valuable alternatives when targeting the orthosteric pocket is not successful for drug development. Starting from SBI-553, a recently discovered intracellular allosteric modulator for neurotensin receptor subtype 1 (NTSR1), we developed the fluorescent molecular probe 14. Compound 14 binds to NTSR1 with an affinity of 0.68 µM in the presence of the agonist NT(8-13). NanoBRET-based ligand binding assays with 14 were established to derive the affinity and structure-activity relationships for allosteric NTSR1 modulators in a direct and nonisotopic manner, thereby facilitating the search for and optimization of novel allosteric NTSR1 ligands. As a consequence of cooperativity between the ligands binding to the allosteric and orthosteric pocket, compound 14 can also be used to investigate orthosteric NTSR1 agonists and antagonists. Moreover, employing 14 as a probe in a drug library screening, we identified novel chemotypes as binders for the intracellular allosteric SBI-553 binding pocket of NTSR1 with single-digit micromolar affinity. These hits may serve as interesting starting points for the development of novel intracellular allosteric ligands for NTSR1 as a highly interesting yet unexploited drug target in the fields of pain and addiction disorder therapy.

6.
J Med Chem ; 67(8): 6327-6343, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570909

RESUMO

The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.


Assuntos
Radioisótopos de Flúor , Neutrófilos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores de Interleucina-8B , Receptores de Interleucina-8B/metabolismo , Humanos , Radioisótopos de Flúor/química , Neutrófilos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Células HEK293
7.
ACS Pharmacol Transl Sci ; 7(7): 2080-2092, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022357

RESUMO

In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal ß-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.

8.
ChemMedChem ; : e202400284, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932712

RESUMO

A conserved intracellular allosteric binding site (IABS) was recently identified at several G protein-coupled receptors (GPCRs). This target site allows the binding of allosteric modulators and enables a new mode of GPCR inhibition. Herein, we report the development of a NanoBRET-based assay platform based on the fluorescent ligand LT221 (5), to detect intracellular binding to CCR6 and CXCR1, two chemokine receptors that have been pursued as promising drug targets in inflammation and immuno-oncology. Our assay platform enables cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and straightforward manner. By combining this screening platform with a previously reported CXCR2 assay, we investigated CXCR1/CXCR2/CCR6 selectivity profiles for both known and novel squaramide analogues derived from navarixin, a known intracellular CXCR1/CXCR2 antagonist and phase II clinical candidate for the treatment of pulmonary diseases. By means of these studies we identified compound 10, a previously reported tert-butyl analogue of navarixin, as a low nanomolar intracellular CCR6 antagonist. Further, our assay platform clearly indicated intracellular binding of the CCR6 antagonist PF-07054894, currently evaluated in phase I clinical trials for the treatment of ulcerative colitis, thereby providing profound evidence for the existence and the pharmacological relevance of a druggable IABS at CCR6.

9.
J Med Chem ; 66(14): 9916-9933, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463496

RESUMO

Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (1), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9a) as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and high-throughput manner. Further, we show that 9a can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small-molecule-based fluorescent CXCR2 ligand 9a represents a promising tool for future studies of CXCR2 pharmacology.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Interleucina-8B , Sítio Alostérico , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
10.
ACS Chem Biol ; 17(8): 2142-2152, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35838163

RESUMO

Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2. By means of these studies, we developed 14 as a fluorescent CCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high-throughput manner. Further, we show that 14 can be used as a tool for fragment-based screening approaches. Thus, our small-molecule-based fluorescent CCR2 ligand 14 represents a promising tool for future studies of CCR2 pharmacology.


Assuntos
Receptores CCR2 , Receptores Acoplados a Proteínas G , Sítio Alostérico , Ligantes , Ligação Proteica , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
Int J Qual Stud Health Well-being ; 15(1): e1719002, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31973667

RESUMO

Purpose: Self-managed institutional homeless programmes started as an alternative to regular shelters. Using institutional theory as a lens, we aim to explore the experiences of stakeholders with the institutional aspects of a self-managed programs.Method: The data we analysed (56 interviews, both open and semi-structured) were generated in a longitudinal participatory case-study into JES, a self-managed homeless shelter. In our analysis we went back and forth between our empirical data and theory, using a combination of systematic coding and interpretation. Participants were involved in all stages of the research.Results: Our analysis revealed similarities between JES and regular shelters, stemming from institutional similarities. Participants shared space and facilities with sixteen people, which caused an ongoing discussion on (enforcement of) rules. Participants loathed lack of private space. However, participants experienced freedom of choice over both their own life and management of JES and structures were experienced more fluid than in regular care. Some structures also appeared stimulated self-management.Conclusion: Our analysis showed how an institutional context influences self-management and suggested opportunities for introducing freedom and fluidity in institutional care.


Assuntos
Habitação/organização & administração , Pessoas Mal Alojadas/psicologia , Autogestão/métodos , Participação dos Interessados/psicologia , Humanos , Estudos Longitudinais , Países Baixos
12.
Biotechnol J ; 15(11): e2000010, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32302461

RESUMO

Technical crystallization is an attractive method to purify recombinant proteins. However, it is rarely applied due to the limited crystallizability of many proteins. To overcome this limitation, single amino acid exchanges are rationally introduced to enhance intermolecular interactions at the crystal contacts of the industrially relevant biocatalyst Lactobacillus brevis alcohol dehydrogenase (LbADH). The wildtype (WT) and the best crystallizing and enzymatically active LbADH mutants K32A, D54F, Q126H, and T102E are produced with Escherichia coli and subsequently crystallized from cell lysate in stirred mL-crystallizers. Notwithstanding the high host cell protein (HCP) concentrations in the lysate, all mutants crystallize significantly faster than the WT. Combinations of mutations result in double mutants with faster crystallization kinetics than the respective single mutants, demonstrating a synergetic effect. The almost entire depletion of the soluble LbADH fraction at crystallization equilibrium is observed, proving high yields. The HCP concentration is reduced to below 0.5% after crystal dissolution and recrystallization, and thus a 100-fold HCP reduction is achieved after two successive crystallization steps. The combination of fast kinetics, high yields, and high target protein purity highlights the potential of crystal contact engineering to transform technical crystallization into an efficient protein capture and purification step in biotechnological downstream processes.


Assuntos
Biotecnologia , Oxirredutases , Álcool Desidrogenase/genética , Cristalização , Cristalografia por Raios X , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA