Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(9): 4308-22, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26719336

RESUMO

Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Osteócitos/enzimologia , Pró-Proteína Convertases/metabolismo , Sarcopenia/metabolismo , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cruzamentos Genéticos , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Knockout , Contração Muscular , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Força Muscular , Músculo Esquelético/patologia , Desenvolvimento Musculoesquelético , Fatores de Regulação Miogênica/genética , Osteócitos/metabolismo , Osteócitos/patologia , Pró-Proteína Convertases/genética , RNA Mensageiro/metabolismo , Sarcopenia/patologia , Serina Endopeptidases/genética , Fatores de Transcrição/genética
2.
Hum Mol Genet ; 24(10): 2884-98, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652402

RESUMO

Caudal regression syndrome (sacral agenesis), which impairs development of the caudal region of the body, occurs with a frequency of about 2 live births per 100 000 newborns although this incidence rises to 1 in 350 infants born to mothers with gestational diabetes. The lower back and limbs can be affected as well as the genitourinary and gastrointestinal tracts. The axial skeleton is formed during embryogenesis through the process of somitogenesis in which the paraxial mesoderm periodically segments into bilateral tissue blocks, called somites. Somites are the precursors of vertebrae and associated muscle, tendons and dorsal dermis. Vertebral anomalies in caudal regression syndrome may arise through perturbation of somitogenesis or, alternatively, could result from defective bone formation and patterning. We discovered that MBTPS1/SKI-1/S1P, which proteolytically activates a class of transmembrane transcription factors, plays a critical role in somitogenesis and the pathogenesis of lumbar/sacral vertebral anomalies. Conditional deletion of Mbtps1 yields a viable mouse with misshapen, fused and reduced number of lumbar and sacral vertebrae, under-developed hind limb bones and a kinky, shortened tail. We show that Mbtps1 is required to (i) maintain the Fgf8 'wavefront' in the presomitic mesoderm that underpins axial elongation, (ii) sustain the Lfng oscillatory 'clock' activity that governs the periodicity of somite formation and (iii) preserve the composition and character of the somitic extracellular matrix containing fibronectin, fibrillin2 and laminin. Based on this spinal phenotype and known functions of MBTPS1, we reason that loss-of-function mutations in Mbtps1 may cause the etiology of caudal regression syndrome.


Assuntos
Canal Anal/anormalidades , Matriz Extracelular/metabolismo , Meningocele/genética , Organogênese/genética , Pró-Proteína Convertases/genética , Reto/anormalidades , Sacro/anormalidades , Serina Endopeptidases/genética , Transdução de Sinais , Somitos/embriologia , Coluna Vertebral/embriologia , Teratoma/genética , Animais , Padronização Corporal/genética , Feminino , Fator 8 de Crescimento de Fibroblasto , Técnicas de Inativação de Genes , Glicosiltransferases , Masculino , Camundongos , Camundongos Knockout
3.
J Biol Chem ; 286(3): 1836-49, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21075843

RESUMO

Mineralization, a characteristic phenotypic property of osteoblastic lineage cells, was blocked by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and decanoyl-Arg-Arg-Leu-Leu-chloromethyl ketone (dec-RRLL-cmk), inhibitors of SKI-1 (site 1; subtilisin kexin like-1) protease. Because SKI-1 is required for activation of SREBP and CREB (cAMP-response element-binding protein)/ATF family transcription factors, we tested the effect of these inhibitors on gene expression. AEBSF decreased expression of 140 genes by 1.5-3.0-fold including Phex, Dmp1, COL1A1, COL11A1, and fibronectin. Direct comparison of AEBSF and dec-RRLL-cmk, a more specific SKI-1 inhibitor, demonstrated that expression of Phex, Dmp1, COL11A1, and fibronectin was reduced by both, whereas COL1A2 and HMGCS1 were reduced only by AEBSF. AEBSF and dec-RRLL-cmk decreased the nuclear content of SKI-1-activated forms of transcription factors SREBP-1, SREBP-2, and OASIS. In contrast to AEBSF, the actions of dec-RRLL-cmk represent the sum of its direct actions on SKI-1 and indirect actions on caspase-3. Specifically, dec-RRLL-cmk reduced intracellular caspase-3 activity by blocking the formation of activated 19-kDa caspase-3. Conversely, overexpression of SKI-1-activated SREBP-1a and CREB-H in UMR106-01 osteoblastic cells increased the number of mineralized foci and altered their morphology to yield mineralization nodules, respectively. In summary, SKI-1 regulates the activation of transmembrane transcription factor precursors required for expression of key genes required for mineralization of osteoblastic cultures in vitro and bone formation in vivo. Our results indicate that the differentiated phenotype of osteoblastic cells and possibly osteocytes depends upon the non-apoptotic actions of SKI-1.


Assuntos
Calcificação Fisiológica/fisiologia , Proteínas da Matriz Extracelular/biossíntese , Regulação da Expressão Gênica/fisiologia , Osteoblastos/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteócitos/citologia , Osteócitos/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Inibidores de Serina Proteinase/farmacologia , Sulfonas/farmacologia , Fatores de Transcrição/genética
4.
Cells Tissues Organs ; 194(2-4): 138-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625062

RESUMO

The mechanism underlying the mineralization of bone is well studied and yet it remains controversial. Inherent difficulties of imaging mineralized tissues and the aqueous solubility of calcium and phosphate, the 2 ions which combine to form bone mineral crystals, limit current analyses of labile diffusible, amorphous, and crystalline intermediates by electron microscopy. To improve the retention of calcium and phosphorus, we developed a pseudo nonaqueous processing approach and used it to characterize biomineralization foci, extracellular sites of hydroxyapatite deposition in osteoblastic cell cultures. Since mineralization of UMR106-01 osteoblasts is temporally synchronized and begins 78 h after plating, we used these cultures to evaluate the effectiveness of our method when applied to cells just prior to the formation of the first mineral crystals. Our approach combines for the first time 3 well-established methods with a fourth one, i.e. dry ultrathin sectioning. Dry ultrathin sectioning with an oscillating diamond knife was used to produce electron spectroscopic images of mineralized biomineralization foci which were high-pressure frozen and freeze substituted. For comparison, cultures were also treated with conventional processing and wet sectioning. The results show that only the use of pseudo nonaqueous processing was able to detect extracellular sites of early calcium and phosphorus enrichment at 76 h, several hours prior to detection of mineral crystals within biomineralization foci.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Fósforo/metabolismo , Água/farmacologia , Células Cultivadas , Substituição ao Congelamento , Humanos , Microscopia Eletrônica de Transmissão por Filtração de Energia , Osteoblastos/efeitos dos fármacos , Pressão , Solventes , Análise Espectral Raman , Fixação de Tecidos
5.
Cells Tissues Organs ; 189(1-4): 25-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18728345

RESUMO

The biochemical mechanism controlling nucleation of mineral crystals in developing bone, along with the growth and propagation of these crystals once formed, remains poorly understood. To define the nucleation mechanism, a proteomics analysis was begun on isolated biomineralization foci (BMF), sites of initial crystal nucleation in osteoblastic cell cultures and in primary bone. Comparative analyses of the protein profile for mineralized BMF with that for total osteoblast cultures revealed the latter were enriched in several proteins including BAG-75 and BSP, as well as fragments of each. When 12 protease inhibitors were added separately to UMR 106-01 osteoblastic cultures, only the serine protease inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) blocked cleavage of BAG-75 and BSP, and prevented mineral crystal nucleation within BMF. Consideration of the specificities of the inhibitors tested and the fact that AEBSF inhibition was not dependent upon inclusion of FBS in the culture media indicated that mineral nucleation does not require serine protease plasmin, thrombin, kallikrein, urokinase, C1s or furin. In contrast, SKI-1 (S1P or site-1) is a membrane-bound serine protease inhibitable by AEBSF. We show here for the first time that mineralizing UMR 106 cells express a 98-kDa active, soluble form of SKI-1 within BMF. In contrast, nonmineralizing UMR cells appear to differentially process SKI-1 into smaller immunoreactive fragments (<35 kDa). These findings suggest that SKI-1 plays a direct or indirect role in assembly of functional nucleation complexes containing BAG-75 and BSP and their fragments, thus facilitating initial mineral nucleation within these biomineralization foci.


Assuntos
Osso e Ossos/enzimologia , Calcificação Fisiológica , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Immunoblotting , Camundongos , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Pró-Proteína Convertases/antagonistas & inibidores , Sulfonas/farmacologia
6.
J Biol Chem ; 284(11): 7100-13, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19116206

RESUMO

Mineralization in UMR 106-01 osteoblastic cultures occurs within extracellular biomineralization foci (BMF) within 12 h after addition of beta-glycerol phosphate to cells at 64 h after plating. BMF are identified by their enrichment with an 85-kDa glycoprotein reactive with Maackia amurensis lectin. Laser Raman microspectroscopic scans were made on individual BMF at times preceding (64-76 h) and following the appearance of mineral crystals (76-88 h). The range of variation between spectra for different BMF in the same culture was rather small. In contrast, significant differences were observed for spectral bands at 957-960, 1004, and 1660 cm(-1) when normalized BMF spectra at different times were compared. Protein-dependent spectral bands at 1004 and 1660 cm(-1) increased and then decreased preceding the detection of hydroxyapatite crystals via the phosphate stretching peak at 959-960 cm(-1). When sodium phosphate was substituted for beta-glycerol phosphate, mineralization occurred 3-6 h earlier. Irrespective of phosphate source, the Raman full peak width at half-maximum ratio for 88 h cultures was similar to that for 10-day-old marrow ablation primary bone. However, if mineralization was blocked with serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 64-88-h BMF spectra remained largely invariant. In summary, Raman spectral data demonstrate for the first time that formation of hydroxyapatite crystals within individual BMF is a multistep process. Second, changes in protein-derived signals at 1004 and 1660 cm(-1) reflect events within BMFs that precede or accompany mineral crystal production because they are blocked by mineralization inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride. Finally, the low extent of spectral variability detected among different BMF at the same time point indicates that mineralization of individual BMF within a culture is synchronized.


Assuntos
Calcificação Fisiológica/fisiologia , Durapatita/metabolismo , Osteoblastos/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Durapatita/química , Masculino , Microscopia Confocal/métodos , Osteoblastos/citologia , Éteres Fosfolipídicos/farmacologia , Fito-Hemaglutininas/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores de Serina Proteinase/farmacologia , Análise Espectral Raman/métodos , Fatores de Tempo
7.
J Biol Chem ; 282(36): 26002-13, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17613519

RESUMO

Mineral crystal nucleation in UMR 106-01 osteoblastic cultures occurs within 15-25-microm extracellular vesicle-containing biomineralization foci (BMF) structures. We show here that BAG-75 and BSP, biomarkers for these foci, are specifically enriched in laser capture microscope-isolated mineralized BMF as compared with the total cell layer. Unexpectedly, fragments of each protein (45-50 kDa in apparent size) were also enriched within captured BMF. When a series of inhibitors against different protease classes were screened, serine protease inhibitor 4-(2-aminoethyl)benzenesulfonylfluoride HCl (AEBSF) was the only one that completely blocked mineral nucleation within BMF in UMR cultures. AEBSF appeared to act on an osteoblast-derived protease at a late differentiation stage in this culture model just prior to mineral deposition. Similarly, mineralization of bone nodules in primary mouse calvarial osteoblastic cultures was completely blocked by AEBSF. Cleavage of BAG-75 and BSP was also inhibited at the minimum dosage of AEBSF sufficient to completely block mineralization of BMF. Two-dimensional SDS-PAGE comparisons of AEBSF-treated and untreated UMR cultures showed that fragmentation/activation of a limited number of other mineralization-related proteins was also blocked. Taken together, our results indicate for the first time that cleavage of BAG-75 and BSP by an AEBSF-sensitive, osteoblast-derived serine protease is associated with mineral crystal nucleation in BMF and suggest that such proteolytic events are a permissive step for mineralization to proceed.


Assuntos
Calcificação Fisiológica/fisiologia , Diferenciação Celular , Glicoproteínas/metabolismo , Osteoblastos/metabolismo , Osteopontina/metabolismo , Serina Endopeptidases/metabolismo , Crânio/metabolismo , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Osteoblastos/citologia , Inibidores de Serina Proteinase/farmacologia , Crânio/citologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA