Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Emerg Infect Dis ; 25(12): 2303-2306, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742520

RESUMO

We report influenza A(H1N1)pdm09 virus infection in a captive giant panda in Hong Kong. The viral load peaked on day 1 and became undetectable on day 5, and an antibody response developed. Genome analysis showed 99.3%-99.9% nucleotide identity between the virus and influenza A(H1N1)pdm09 virus circulating in Hong Kong.


Assuntos
Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Ursidae/virologia , Animais , Linhagem Celular , Genoma Viral , Genômica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hong Kong/epidemiologia , Masculino , Filogenia , Carga Viral
2.
BMC Vet Res ; 15(1): 4, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606196

RESUMO

BACKGROUND: Nocardiosis is often a multi-systemic disease in humans and other mammals. Nocardiosis in birds is uncommon. Laboratory identification of Nocardia to the species level is difficult by traditional phenotypic methods based on biochemical reactions and hydrolysis tests, and is most accurately performed by sequencing multiple gene targets. CASE PRESENTATION: We report the first case of fatal Nocardia nova infection in a yellow-bibbed lory nestling in an oceanarium diagnosed by multilocus sequencing. Necropsy examination showed effacement of normal sternal musculature with yellowish, firm aberrant material, and diffuse infiltration of the lungs with nodular, tan to yellow foci. Histologically, severe granulomatous inflammation with marked necrosis was observed in the lung, spleen and sternal musculature. Fine, sometimes Gram-positive, 0.5-1 µm wide, branching and beaded filamentous organisms were visible within the lesions. They were acid-fast on Fite-Faraco stain. Tissue samples obtained from the sternum, liver, right lung and right kidney recovered Nocardia species. Sequencing of four gene loci and phylogenetic analysis of concatenated (gyrB-16S-secA1-hsp65) sequences revealed that the isolate was N. nova. CONCLUSIONS: We report the first case of N. nova infection in yellow-bibbed lorry (Lorius chlorocercus). The present case is the first one of which the species identity of the isolate was determined by multilocus sequencing. Molecular diagnosis is important for identifying the Nocardia to species level and understanding the epidemiology of nocardiosis in birds.


Assuntos
Doenças das Aves/microbiologia , Nocardiose/veterinária , Nocardia/genética , Papagaios/microbiologia , Animais , Animais de Zoológico/microbiologia , Doenças das Aves/patologia , Evolução Fatal , Hong Kong , Pulmão/microbiologia , Pulmão/patologia , Tipagem de Sequências Multilocus/veterinária , Nocardiose/microbiologia , Nocardiose/patologia , Filogenia
3.
J Gen Virol ; 99(6): 777-782, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29722646

RESUMO

In this study, two novel noroviruses (NoVs) were discovered from faecal samples from California sea lions from an oceanarium in Hong Kong, and named California sea lion NoV 1 (Csl/NoV1) and California sea lion NoV 2 (Csl/NoV2). Whole-genome sequencing showed that the genome organization and amino acid motifs of both Csl/NoV1 and Csl/NoV2 were typical of those of other NoVs in their open reading frames (ORFs). Csl/NoV1 possessed only 52.6-52.8 % amino acid identity in VP1 to the closest matches in genogroup GII. Therefore, Csl/NoV1 should constitute a novel genogroup of NoV. Shifting of the phylogenetic position of Csl/NoV1 in the RdRp, VP1 and VP2 trees was observed, which may have been due to recombination events and/or biased mutations. Csl/NoV2 possessed 55.4-56.2 % amino acid identity in VP1 to its closest relatives in genogroup GVI, which means that it represents a new genotype in genogroup GVI. Further studies will reveal what diseases these NoVs can cause in marine mammals.


Assuntos
Infecções por Caliciviridae/veterinária , Genoma Viral , Norovirus/classificação , Leões-Marinhos/virologia , Animais , California , Fezes/virologia , Variação Genética , Genótipo , Norovirus/genética , Norovirus/isolamento & purificação , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
5.
J Virol ; 88(2): 1318-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227844

RESUMO

While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 10(3) to 1 × 10(5) copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus.


Assuntos
Golfinho Nariz-de-Garrafa/virologia , Infecções por Coronaviridae/veterinária , Coronaviridae/classificação , Coronaviridae/isolamento & purificação , Animais , Sequência de Bases , Coronaviridae/genética , Infecções por Coronaviridae/virologia , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia
6.
Mycoses ; 58(7): 422-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095191

RESUMO

Fusarium species are environmental saprophytic fungi. Among the many Fusarium species, members of the Fusarium solani species complex (FSSC) are the most prevalent and virulent in causing human and animal infections. In this study, we describe the first case of fatal FSSC infection in a black spotted stingray and three concomitant infections in scalloped hammerhead sharks. In the stingray, cutaneous lesions were characterised by ulcers and haemorrhage of the ventral pectoral fin, or 'ray', especially around the head; while cutaneous lesions in the sharks were characterised by ulcers, haemorrhage, as well as white and purulent exudates at the cephalic canals of the cephalofoil and lateral line. Histological sections of the cutaneous lesions revealed slender (1-4 µm in diameter), branching, septate fungal hyphae. Internal transcribed spacer region and 28S nrDNA sequencing of the fungal isolates from the fish showed two isolates were F. keratoplasticum (FSSC 2) and the other two were FSSC 12. Environmental investigation revealed the FSSC strains isolated from water and biofilms in tanks that housed the elasmobranchs were also F. keratoplasticum and FSSC 12. Fusarium is associated with major infections in elasmobranchs and FSSC 12 is an emerging cause of infections in marine animals. DNA sequencing is so far the most reliable method for accurate identification of Fusarium species.


Assuntos
Elasmobrânquios/microbiologia , Doenças dos Peixes/microbiologia , Fusariose/veterinária , Fusarium/isolamento & purificação , Tubarões/microbiologia , Pele/microbiologia , Animais , Evolução Fatal , Fusariose/microbiologia , Fusarium/classificação , Fusarium/genética , Humanos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA , Pele/ultraestrutura
7.
J Clin Microbiol ; 52(10): 3614-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078906

RESUMO

Beginning in July 2011, 31 green anaconda (Eunectes murinus) juveniles from an oceanarium in Hong Kong died over a 12-month period. Necropsy revealed at least two of the following features in 23 necropsies: dermatitis, severe pan-nephritis, and/or severe systemic multiorgan necrotizing inflammation. Histopathological examination revealed severe necrotizing inflammation in various organs, most prominently the kidneys. Electron microscopic examination of primary tissues revealed intralesional accumulations of viral nucleocapsids with diameters of 10 to 14 nm, typical of paramyxoviruses. Reverse transcription (RT)-PCR results were positive for paramyxovirus (viral loads of 2.33 × 10(4) to 1.05 × 10(8) copies/mg tissue) in specimens from anaconda juveniles that died but negative in specimens from the two anaconda juveniles and anaconda mother that survived. None of the other snakes in the park was moribund, and RT-PCR results for surveillance samples collected from other snakes were negative. The virus was isolated from BHK21 cells, causing cytopathic effects with syncytial formation. The virus could also replicate in 25 of 27 cell lines of various origins, in line with its capability for infecting various organs. Electron microscopy with cell culture material revealed enveloped virus with the typical "herringbone" appearance of helical nucleocapsids in paramyxoviruses. Complete genome sequencing of five isolates confirmed that the infections originated from the same clone. Comparative genomic and phylogenetic analyses and mRNA editing experiments revealed a novel paramyxovirus in the genus Ferlavirus, named anaconda paramyxovirus, with a typical Ferlavirus genomic organization of 3'-N-U-P/V/I-M-F-HN-L-5'. Epidemiological and genomic analyses suggested that the anaconda juveniles acquired the virus perinatally from the anaconda mother rather than from other reptiles in the park, with subsequent interanaconda juvenile transmission.


Assuntos
Boidae/virologia , Infecções por Paramyxoviridae/veterinária , Paramyxovirinae/classificação , Paramyxovirinae/isolamento & purificação , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Animais de Zoológico , Linhagem Celular , Análise por Conglomerados , Hong Kong , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Infecções por Paramyxoviridae/patologia , Infecções por Paramyxoviridae/virologia , Paramyxovirinae/genética , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Carga Viral , Vírion/ultraestrutura , Cultura de Vírus
9.
J Virol ; 86(11): 6377-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22570247

RESUMO

We discovered a novel otarine picobirnavirus in fecal samples of California sea lions. Its genome contains a large segment with two open reading frames (ORFs), ORF1 encoding a putative protein of 163 amino acids with unknown function and ORF2 encoding capsid protein, and a small segment with one ORF encoding RNA-dependent RNA polymerase.


Assuntos
Genoma Viral , Picobirnavirus/genética , Infecções por Vírus de RNA/veterinária , RNA Viral/genética , Leões-Marinhos/virologia , Análise de Sequência de DNA , Animais , Fezes/virologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Picobirnavirus/isolamento & purificação , Infecções por Vírus de RNA/virologia , Proteínas Virais/genética
10.
Integr Zool ; 16(4): 575-585, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32961018

RESUMO

Reproductive hormones in serum concentrations of progesterone, estradiol, and testosterone in female Indo-Pacific bottlenose dolphins (Tursiops aduncus, n = 12) housed in Ocean Park Hong Kong were investigated in the present study. Results showed that, onset of puberty of captive Indo-Pacific bottlenose dolphins was at 5 years while sexual maturity was at 6. Average serum progesterone concentrations in non-pregnant sexually mature individuals was 0.33 (0.25-0.97) ng/mL (interquartile), significantly higher than in immature ones 0.26 (0.25-0.38) ng/mL. This study found significant difference in serum estradiol concentrations between individuals at the onset of puberty (9.5 ± 1.7 pg/mL, ±SD) and not (below detection limit 9 pg/mL). A slightly seasonal breeding pattern, with progesterone values tend to be higher from February to October (0.38 [0.25-1.07] ng/mL) was inferred. During pregnancy, serum progesterone concentrations range from 10.54 ± 8.74 ng/mL (indexed month post-conception [IMPC] 0) to 25.49 ± 12.06 ng/mL (IMPC 2), and display a bimodal pattern with 2 peaks in early- (25.49 ± 12.06 ng/mL, IMPC 2) and late-pregnancy (21.71 ± 10.25 ng/mL, IMPC 12), respectively. Serum estradiol concentrations can seldom be detected in early-pregnancy and increase constantly in mid- (9.45 ± 1.83 pg/mL) and late-pregnancy (11.88 ± 3.81 pg/mL), with a spike (15.45 ± 6.78 pg/mL) 1 month prior to delivery. Serum testosterone concentrations elevate significantly in IMPC 7 (0.36 ± 0.10 ng/mL) compared to other months (0.16 ± 0.10 ng/mL) of the year. The present study provides normal concentration profiles for some reproductive hormones in female Indo-Pacific bottlenose dolphins and can contribute to the breeding monitoring of this species. Also, our study would shed further light on the reproductive physiology of small cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Estro/fisiologia , Maturidade Sexual/fisiologia , Animais , Golfinho Nariz-de-Garrafa/sangue , Estradiol/sangue , Estro/sangue , Feminino , Gravidez/sangue , Progesterona/sangue , Testosterona/sangue
11.
Microorganisms ; 9(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068581

RESUMO

In addition to human cases, cases of COVID-19 in captive animals and pets are increasingly reported. This raises the concern for two-way COVID-19 transmission between humans and animals. Here, we developed a SARS-CoV-2 nucleocapsid protein-based competitive enzyme-linked immunosorbent assay (cELISA) for serodiagnosis of COVID-19 which can theoretically be used in virtually all kinds of animals. We used 187 serum samples from patients with/without COVID-19, laboratory animals immunized with inactive SARS-CoV-2 virions, COVID-19-negative animals, and animals seropositive to other betacoronaviruses. A cut-off percent inhibition value of 22.345% was determined and the analytical sensitivity and specificity were found to be 1:64-1:256 and 93.9%, respectively. Evaluation on its diagnostic performance using 155 serum samples from COVID-19-negative animals and COVID-19 human patients showed a diagnostic sensitivity and specificity of 80.8% and 100%, respectively. The cELISA can be incorporated into routine blood testing of farmed/captive animals for COVID-19 surveillance.

12.
Infect Genet Evol ; 51: 239-244, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28404483

RESUMO

From July 2011 to June 2012, 31 out of 33 green anaconda juveniles from an oceanarium in Hong Kong died over a 12-month period. These anacondas were progeny of a female anaconda purchased from Japan and added to the collection in May 2011. The juvenile anacondas were born in July 2011. A novel paramyxovirus, named anaconda paramyxovirus (AnaPV), was isolated from these affected juvenile anacondas. In July 2015, one of the remaining two anacondas, that survived the cluster of fatal infections, died at the age of four. Pathologically, both the death of the four-year-old anaconda and the previous deaths of the anaconda juveniles involved multiple, similar organs. However, the organ that was primarily affected in the juvenile anacondas that died in 2011 was the kidney, whereas the most remarkable lesions in the four-year-old anaconda involved the lungs. Granulomas previously observed in the juvenile anacondas with AnaPV infections were not obvious in the four-year-old anaconda. RT-PCR for the L gene of AnaPV was positive for the lungs, kidneys, ovary, spleen, liver, tracheal content and gall bladder of the four-year-old anaconda, with a median viral load of 1.32×106AnaPVRNAcopies/mg. Complete genome sequencing revealed that there were only 12-14 nucleotide changes in the AnaPV genome of the four-year old anaconda compared to those of the AnaPV found in anaconda juveniles in 2011/2012. Among these nucleotide changes, only four were non-synonymous mutations, with one in the N gene, one in the M gene and two in the HN gene. Both epidemiological and molecular data supported that the four-year-old green anaconda probably acquired the AnaPV from its mother or its siblings that died 3-4years ago, and its death is a result of an unprecedented extended incubation period or latency of AnaPV followed by a subsequent manifestation of clinical disease and death.


Assuntos
Genes Virais , Genoma Viral , Infecções por Paramyxoviridae/virologia , Paramyxoviridae/genética , Latência Viral , Animais , Boidae , Linhagem Celular , Cricetinae , Evolução Fatal , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Rim/patologia , Rim/virologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Paramyxoviridae/patogenicidade , Infecções por Paramyxoviridae/patologia , Baço/patologia , Baço/virologia , Carga Viral
13.
Front Microbiol ; 7: 1886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933049

RESUMO

In a molecular epidemiology study using 791 fecal samples collected from different terrestrial and marine mammals in Hong Kong, genogroup I picobirnaviruses (PBVs) were positive by RT-PCR targeting the partial RdRp gene in specimens from five cattle, six monkeys, 17 horses, nine pigs, one rabbit, one dog, and 12 California sea lions, with 11, 9, 23, 17, 1, 1, and 15 sequence types in the positive specimens from the corresponding animals, respectively. Phylogenetic analysis showed that the PBV sequences from each kind of animal were widely distributed in the whole tree with high diversity, sharing 47.4-89.0% nucleotide identities with other genogroup I PBV strains based on the partial RdRp gene. Nine complete segment 1 (viral loads 1.7 × 104 to 5.9 × 106/ml) and 15 segment 2 (viral loads 4.1 × 103 to 1.3 × 106/ml) of otarine PBVs from fecal samples serially collected from California sea lions were sequenced. In the two phylogenetic trees constructed using ORF2 and ORF3 of segment 1, the nine segment 1 sequences were clustered into four distinct clades (C1-C4). In the tree constructed using RdRp gene of segment 2, the 15 segment 2 sequences were clustered into nine distinct clades (R1-R9). In four sea lions, PBVs were detected in two different years, with the same segment 1 clade (C3) present in two consecutive years from one sea lion and different clades present in different years from three sea lions. A high diversity of PBVs was observed in a variety of terrestrial and marine mammals. Multiple sequence types with significant differences, representing multiple strains of PBV, were present in the majority of PBV-positive samples from different kinds of animals.

14.
Cell Biosci ; 5: 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097677

RESUMO

BACKGROUND: Burkholderia pseudomallei is an emerging pathogen that causes melioidosis, a serious and potentially fatal disease which requires prolonged antibiotics to prevent relapse. However, diagnosis of melioidosis can be difficult, especially in culture-negative cases. While metabolomics represents an uprising tool for studying infectious diseases, there were no reports on its applications to B. pseudomallei. To search for potential specific biomarkers, we compared the metabolomics profiles of culture supernatants of B. pseudomallei (15 strains), B. thailandensis (3 strains), B. cepacia complex (14 strains), P. aeruginosa (4 strains) and E. coli (3 strains), using ultra-high performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS). Multi- and univariate analyses were used to identify specific metabolites in B. pseudomallei. RESULTS: Principal component and partial-least squares discrimination analysis readily distinguished the metabolomes between B. pseudomallei and other bacterial species. Using multi-variate and univariate analysis, eight metabolites with significantly higher levels in B. pseudomallei were identified. Three of the eight metabolites were identified by MS/MS, while five metabolites were unidentified against database matching, suggesting that they may be potentially novel compounds. One metabolite, m/z 144.048, was identified as 4-methyl-5-thiazoleethanol, a degradation product of thiamine (vitamin B1), with molecular formula C6H9NOS by database searches and confirmed by MS/MS using commercially available authentic chemical standard. Two metabolites, m/z 512.282 and m/z 542.2921, were identified as tetrapeptides, Ile-His-Lys-Asp with molecular formula C22H37N7O7 and Pro-Arg-Arg-Asn with molecular formula C21H39N11O6, respectively. To investigate the high levels of 4-methyl-5-thiazoleethanol in B. pseudomallei, we compared the thiamine degradation pathways encoded in genomes of B. pseudomallei and B. thailandensis. While both B. pseudomallei and B. thailandensis possess thiaminase I which catalyzes degradation of thiamine to 4-methyl-5-thiazoleethanol, thiM, which encodes hydroxyethylthiazole kinase responsible for degradation of 4-methyl-5-thiazoleethanol, is present and expressed in B. thailandensis as detected by PCR/RT-PCR, but absent or not expressed in all B. pseudomallei strains. This suggests that the high 4-methyl-5-thiazoleethanol level in B. pseudomallei is likely due to the absence of hydroxyethylthiazole kinase and hence reduced downstream degradation. CONCLUSION: Eight novel biomarkers, including 4-methyl-5-thiazoleethanol and two tetrapeptides, were identified in the culture supernatant of B. pseudomallei.

15.
Emerg Microbes Infect ; 3(10): e69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26038496

RESUMO

Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial culture for isolation have low sensitivities and are labor-intensive. Using a specific polymerase chain reaction (PCR) assay targeting a Tat domain protein in comparison with a bacterial culture method, we examined the prevalence of B. pseudomallei in soil samples from an oceanarium in Hong Kong where captive marine mammals and birds have contracted melioidosis. Among 1420 soil samples collected from various sites in the oceanarium over a 15-month period, B. pseudomallei was detected in nine (0.6%) soil samples using bacterial culture, whereas it was detected in 96 (6.8%) soil samples using the specific PCR assay confirmed by sequencing. The PCR-positive samples were detected during various months, with higher detection rates observed during summer months. Positive PCR detection was significantly correlated with ambient temperature (P<0.0001) and relative humidity (P=0.011) but not with daily rainfall (P=0.241) or a recent typhoon (P=0.787). PCR-positive samples were obtained from all sampling locations, with the highest detection rate in the valley. Our results suggest that B. pseudomallei is prevalent and endemic in the oceanarium. The present PCR assay is more sensitive than the bacterial culture method, and it may be used to help better assess the transmission of melioidosis and to design infection control measures for captive animals in this unique and understudied environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA