Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt D): 113479, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588777

RESUMO

Searching for an economical and highly efficient electrocatalytic reduction catalyst for ammonia synthesis under controllable conditions is a very attractive and challenging subject in chemistry. In this study, we systematically studied the electrocatalytic performance of BC3 nanosheets as potential NO reduction reaction (NORR) electrocatalysts using density functional theory (DFT) calculations. It was found that BC3 two-dimensional (2D) materials exhibit excellent catalytic activity with a very low limiting potential of -0.29/-0.11 V along three reaction paths. The total reaction is NO (g)+5H++5e-→NH3(g)+ H2O. The density of states of adsorbed NO, NH3, and the corresponding crystal orbital hamiltonian population (COHP) analysis revealed the mechanism of NO being activated and the reasons for NH3 adsorption/desorption on the surface of BC3. The reaction path, limiting potential, and Gibbs free energy calculations of BC3 catalyzed NO to ammonia synthesis revealed that for path 1, the potential-determining step is *NO+H++e-→*NOH, and for path 2/3 the potential-determining step is *NO+(H++e-)→*HNO. Calculation of the thermodynamic energy barriers for NO dissociation at the BC3 surface and NO hydrogenation reveals that NO is more likely to be hydrogenated rather than dissociated. The influences of the proton-electron hydrogenation site on the process of ammonia synthesis in the key reduction step were analyzed by Bader charge analysis and charge density, it is pointed out that the electronic structure and affects the reaction process can be controlled by hydrogenation at different sites of intermediates. These results pave the way for using nitrogen oxides not just nitrogen as raw materials for ammonia synthesis with 2D materials.

2.
Phys Chem Chem Phys ; 23(40): 23219-23224, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34622904

RESUMO

The separation of CO2 or CH4 from a CO2/CH4 mixture has drawn great attention in relation to solving air pollution and energy shortage issues. However, research into using bifunctional catalysts to separate CO2 and CH4 under different conditions is absent. We have herein designed a novel B-doped two-dimensional InSe (B@2DInSe) catalyst, which can chemically adsorb CO2 with covalent bonds. B@2DInSe can separate CO2 and CH4 in different electric fields, which originates from different regulation mechanisms by an electric field (EF) on the electric properties. The hybridization states between CO2 and B@2DInSe near the Fermi level have experienced gradual localization and eventually merged into a single narrow peak under an increased EF. As the EF further increased, the merged peak shifted towards higher energy states around the Fermi level. In contrast, the EF mainly alters the degree of hybridization between CH4 and B@2DInSe at states far below the Fermi level, which is different from the CO2 situation. These characteristics can also lead to perfect linear relationships between the adsorption energies of CO2/CH4 and the electric field, which may be beneficial for the prediction of the required EF without large volumes of calculations. Our results have not only provided novel clues for catalyst design, but they have also provided deep understanding into the mechanisms of bifunctional catalysts.

3.
Phys Chem Chem Phys ; 20(21): 14545-14556, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29766158

RESUMO

The pursuit of catalysts to promote effective water oxidization to produce oxygen has become a research subject of high priority for water splitting. Here, first-principles calculations are employed to study the water-splitting oxygen evolution reaction (OER) on ∼1.5 nm diameter Au13@Ni120P50 core-shell nanoclusters. Water splitting to produce oxygen proceeds in four intermediate reaction steps (OH*, O*, OOH* and O2). Adsorption configurations and adsorption energies for the species involved in OER on both Au13@Ni120P50 cluster and Ni12P5(001) supported by Au are presented. In addition, thermodynamic free energy diagrams and kinetic potential energy changes are systematically discussed. We show that the third intermediate reaction (O* reacting with H2O to produce OOH*) of the four elementary steps is the reaction-determining step, which accords with previous results. Also, the catalytic performance of OER for Au13@Ni120P50 is better than that for Ni12P5(001) supported by Au in terms of reactive overpotential (0.74 vs. 1.58 V) and kinetic energy barrier (2.18 vs. 3.17 eV). The optimal kinetic pathway for OER is further explored carefully for the Au13@Ni120P50 cluster. The low thermodynamic overpotential and kinetic energy barrier make Au13@Ni120P50 promising for industrial applications as a good OER electrocatalyst candidate.

4.
J Colloid Interface Sci ; 608(Pt 1): 963-972, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785471

RESUMO

The practical applications of lithium sulfur battery is impeded by the lithium polysulfide shuttling and sluggish redox kinetics. To address the issues, herein, a multifunctional host is developed by the combination of nitrogen, phosphorus co-doped carbon fiber (NPCF) and CoS2 towards boost the soluble polysulfides adsorption and transformation. Benefiting from the NPCF originated from biomass cattail fibers, a high conductive network is provided, and shuttle effect is reduced due to the strong chemical interaction between abundant heteroatom polar sites and lithium polysulfides. Moreover, the electrocatalytic CoS2 on the carbon skeleton facilitate lithium polysulfides conversion and lithium sulfide deposition based on the density functional theory calculations and experiments. The efficient lithium polysulfides entrapment and subsequent electrocatalytic conversion improve dynamic stability during cycling, especially for rate capability. With these advantageous features, the electrode with NPCF/CoS2 host can deliver a good rate capability (903 and 782 mAh g-1 at 1C and 2C, respectively) and stable cycling performance with an ultra-low capacity decay of 0.014% per cycle at 1C. Notably, the cell can achieve a high areal capacity of 4.96 mA h cm-2 under an elevated sulfur loading of 5.0 mg cm-2. Overall, the improvement on the electrochemical performance ascertains the validity of the design strategy based on synergy engineering, which is a highly suitable approach for energy storage and conversion application.

5.
J Mol Model ; 27(2): 38, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33447954

RESUMO

In this paper, the reaction process of N2 convert to NH3 catalyzed by Ag (111) surface was obtained through the construction of Ag (111) surface and computational simulation. The charge transfer in the reaction process and the change of N≡N bond length are described. Since the N2 reduction reaction (NRR) usually occurs under alkaline solution conditions, we calculated and described the coexistence of OH* and N2. At the same time, the co-adsorption structure of OH* and N2 at different adsorption sites was studied.

6.
Nanoscale ; 13(45): 19247-19254, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34787144

RESUMO

Two-dimensional (2D) metal-organic frameworks (MOFs) serve as emerging electrocatalysts due to their high conductivity, chemical tunability, and accessibility of active sites. We herein proposed a series of 2D MOFs with different metal atoms and organic linkers with the formula M3C12X12 (M = Cr, Mo, and W; X = NH, O, S, and Se) to design efficient nitrogen reduction reaction (NRR) electrocatalysts. Our theoretical calculations showed that metal atoms in M3C12X12 can efficiently capture and activate N2 molecules. Among these candidates, W3C12X12 (X = O, S, and Se) show the best NRR performance due to their high activity and selectivity as well as low limiting potential (-0.59 V, -0.14 V, and -0.01 V, respectively). Moreover, we proposed a d-band center descriptor strategy to screen out the high activity and selectivity of M3C12X12 for the NRR. Therefore, our work not only demonstrates a class of promising electrocatalysts for the NRR but also provides a strategy for further predicting the catalytic activity of 2D MOFs.

7.
Front Chem ; 8: 605311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33937181

RESUMO

Based on the first principles of density functional theory, the adsorption behavior of H2CO on original monolayer MoS2 and Zn doped monolayer MoS2 was studied. The results show that the adsorption of H2CO on the original monolayer MoS2 is very weak, and the electronic structure of the substrate changes little after adsorption. A new kind of surface single cluster catalyst was formed after Zn doped monolayer MoS2, where the ZnMo3 small clusters made the surface have high selectivity. The adsorption behavior of H2CO on Zn doped monolayer MoS2 can be divided into two situations. When the H-end of H2CO molecule in the adsorption structure is downward, the adsorption energy is only 0.11 and 0.15 eV and the electronic structure of adsorbed substrate changes smaller. When the O-end of H2CO molecule is downward, the interaction between H2CO and the doped MoS2 is strong leading to the chemical adsorption with the adsorption energy of 0.80 and 0.98 eV. For the O-end-down structure, the adsorption obviously introduces new impurity states into the band gap or results in the redistribution of the original impurity states. All of these may lead to the change of the chemical properties of the doped MoS2 monolayer, which can be used to detect the adsorbed H2CO molecules. The results show that the introduction of appropriate dopant may be a feasible method to improve the performance of MoS2 gas sensor.

8.
J Phys Condens Matter ; 29(43): 435701, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28786817

RESUMO

A family of Au n @(ZnO)[Formula: see text] ([Formula: see text]-16) cluster-assembled nanoparticles are studied by density-functional theory calculations. Different sizes, up to 100 atoms, are considered for several compositions. For each n, we design and construct a converged model for Au n @(ZnO)[Formula: see text] to analyze the coupling effect of adding Au atoms into ZnO outer shell. Among the optimized geometrical structures, we find that [Formula: see text]@(ZnO)[Formula: see text] has the most stable structure. The electronic properties, optical properties and catalytic activity of the [Formula: see text]@(ZnO)[Formula: see text] core-shell have been systematically investigated, which also shows consistency with the experimental results. It is found that forming a core-shell structure enhances the visible-light photocatalytic ability and [Formula: see text]@(ZnO)[Formula: see text] core-shell structure has a high catalytic efficiency for the reaction CO oxidation.

9.
Sci Rep ; 7(1): 16485, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184077

RESUMO

The magnetic transition-metal (TM) @ oxide nanoparticles have been of great interest due to their wide range of applications, from medical sensors in magnetic resonance imaging to photo-catalysis. Although several studies on small clusters of TM@oxide have been reported, the understanding of the physical electronic properties of TMn@(ZnO)42 is far from sufficient. In this work, the electronic, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure are investigated using the density functional theory (DFT). It has been found that the core-shell nanostructure Fe13@(ZnO)42, Co15@(ZnO)42 and Ni15@(ZnO)42 are the most stable structures. Moreover, it is also predicted that the variation of the magnetic moment and magnetism of Fe, Co and Ni in TMn@ZnO42 hetero-nanostructure mainly stems from effective hybridization between core TM-3d orbitals and shell O-2p orbitals, and a magnetic moment inversion for Fe15@(ZnO)42 is investigated. Finally, optical properties studied by calculations show a red shift phenomenon in the absorption spectrum compared with the case of (ZnO)48.

10.
Sci Rep ; 6: 35464, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759038

RESUMO

This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA