Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252972

RESUMO

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Camundongos , Animais , Glucose/metabolismo , Prolina/metabolismo , Hidroxilação , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese/fisiologia , Prolil Hidroxilases/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL
2.
Diabetes Metab Res Rev ; 38(5): e3524, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107206

RESUMO

AIM: Sorbin and SH3-domain-containing-1 (SORBS1) play important roles in insulin signalling and cytoskeleton regulation. Variants of the SORBS1 gene have been inconsistently reported to be associated with type 2 diabetes or diabetic kidney disease (DKD). METHODS: Two independent case-control studies based on two randomized sampling cohorts (cohort 1, n = 3345; cohort 2, n = 2282) were used to confirm the association between rs2281939 of SORBS1 and impaired glucose regulation (IGR). An additional hospital-based cohort (cohort 3, n = 2135) and cohort 1 were used to investigate the association between rs2281939 and DKD. The phenotype of rare variants of SORBS1 was explored in 453 patients with early onset type 2 diabetes (diagnosed before 40 years of age, EOD). RESULTS: The G allele was associated with type 2 diabetes (additive model: OR = 1.25, 95% CI [1.03-1.52], p = 0.022) in cohort 1, and IGR in cohort 2 (additive model: OR = 1.22, 95% CI [1.05-1.43], p = 0.01). We found that the G allele was also associated with HDL-c levels in women in both cohort 1 (p = 0.03) and 2 (p = 0.029) in the dominant model. The rare variant carriers also had lower HDL-c and LDL-c levels than non-carriers in patients with EOD. No association between rs2281939 or rare variants and DKD was observed. CONCLUSIONS: The variants in the SORBS1 gene were associated with IGR and HDL-c levels but not with DKD in the Chinese Han population.


Assuntos
Diabetes Mellitus Tipo 2 , Povo Asiático/genética , China/epidemiologia , HDL-Colesterol , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Insulina , Proteínas dos Microfilamentos/genética
3.
J Lipid Res ; 61(11): 1504-1511, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32817344

RESUMO

Accompanied with nutrition transition, non-HDL-C levels of individuals in Asian countries has increased rapidly, which has caused the global epicenter of nonoptimal cholesterol to shift from Western countries to Asian countries. Thus, it is critical to underline major genetic and dietary determinants. In the current study of 2,330 Chinese individuals, genetic risk scores (GRSs) were calculated for total cholesterol (TC; GRSTC, 57 SNPs), LDL-C (GRSLDL-C, 45 SNPs), and HDL-C (GRSHDL-C, 65 SNPs) based on SNPs from the Global Lipid Genetics Consortium study. Cholesterol intake was estimated by a 74-item food-frequency questionnaire. Associations of dietary cholesterol intake with plasma TC and LDL-C strengthened across quartiles of the GRSTC (effect sizes: -0.29, 0.34, 2.45, and 6.47; Pinteraction = 0.002) and GRSLDL-C (effect sizes: -1.35, 0.17, 5.45, and 6.07; Pinteraction = 0.001), respectively. Similar interactions with non-HDL-C were observed between dietary cholesterol and GRSTC (Pinteraction = 0.001) and GRSLDL-C (Pinteraction = 0.004). The adverse effects of GRSTC on TC (effect sizes across dietary cholesterol quartiles: 0.51, 0.82, 1.21, and 1.31; Pinteraction = 0.023) and GRSLDL-C on LDL-C (effect sizes across dietary cholesterol quartiles: 0.66, 0.52, 1.12, and 1.56; Pinteraction = 0.020) were more profound in those having higher cholesterol intake compared with those with lower intake. Our findings suggest significant interactions between genetic susceptibility and dietary cholesterol intake on plasma cholesterol profiles in a Chinese population.


Assuntos
Colesterol na Dieta/administração & dosagem , LDL-Colesterol/genética , Colesterol/genética , Idoso , Povo Asiático , Colesterol/sangue , Colesterol na Dieta/efeitos adversos , LDL-Colesterol/sangue , Feminino , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
4.
Hepatology ; 68(4): 1361-1375, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637572

RESUMO

Insulin is critical for the regulation of de novo fatty acid synthesis, which converts glucose to lipid in the liver. However, how insulin signals are transduced into the cell and then regulate lipogenesis remains to be fully understood. Here, we identified CREB/ATF bZIP transcription factor (CREBZF) of the activating transcription factor/cAMP response element-binding protein (ATF/CREB) gene family as a key regulator for lipogenesis through insulin-Akt signaling. Insulin-induced gene 2a (Insig-2a) decreases during refeeding, allowing sterol regulatory element binding protein 1c to be processed to promote lipogenesis; but the mechanism of reduction is unknown. We show that Insig-2a inhibition is mediated by insulin-induced CREBZF. CREBZF directly inhibits transcription of Insig-2a through association with activating transcription factor 4. Liver-specific knockout of CREBZF causes an induction of Insig-2a and Insig-1 and resulted in repressed lipogenic program in the liver of mice during refeeding or upon treatment with streptozotocin and insulin. Moreover, hepatic CREBZF deficiency attenuates hepatic steatosis in high-fat, high-sucrose diet-fed mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced insulin resistance or genetically obese ob/ob mice and humans with hepatic steatosis, which may underscore the potential role of CREBZF in the development of sustained lipogenesis in the liver under selective insulin resistance conditions. CONCLUSION: These findings uncover an unexpected mechanism that couples changes in extracellular hormonal signals to hepatic lipid homeostasis; disrupting CREBZF function may have the therapeutic potential for treating fatty liver disease and insulin resistance. (Hepatology 2018).


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Resistência à Insulina/genética , Lipogênese/genética , Análise de Variância , Animais , Biópsia por Agulha , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Transdução de Sinais
5.
Front Nutr ; 11: 1363181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481969

RESUMO

Caloric restriction (CR) or energy restriction, when carefully designed, monitored, and implemented in self-motivated and compliant individuals, proves to be a viable non-pharmacologic strategy for human weight control and obesity management. Beyond its role in weight management, CR has the potential to impede responses involved not only in the pathogenesis of various diseases but also in the aging process in adults, thereby being proposed to promote a healthier and longer life. The core objective of implementing caloric restriction is to establish a balance between energy intake and expenditure, typically involving a reduction in intake and an increase in expenditure-a negative balance at least initially. It may transition toward and maintain a more desired equilibrium over time. However, it is essential to note that CR may lead to a proportional reduction in micronutrient intake unless corresponding supplementation is provided. Historical human case reports on CR have consistently maintained adequate intakes (AI) or recommended dietary allowances (RDA) for essential micronutrients, including vitamins and minerals. Similarly, longevity studies involving non-human primates have upheld micronutrient consumption levels comparable to control groups or baseline measures. Recent randomized controlled trials (RCTs) have also endorsed daily supplementation of multivitamins and minerals to meet micronutrient needs. However, aside from these human case reports, limited human trials, and primate experiments, there remains a notable gap in human research specifically addressing precise micronutrient requirements during CR. While adhering to AI or RDA for minerals and vitamins appears sensible in the current practice, it's important to recognize that these guidelines are formulated for generally healthy populations under standard circumstances. The adequacy of these guidelines in the setting of prolonged and profound negative energy balance remains unclear. From perspectives of evidence-based medicine and precision nutrition, this field necessitates comprehensive exploration to uncover the intricacies of absorption, utilization, and metabolism and the requirement of each hydrophilic and lipophilic vitamin and mineral during these special periods. Such investigations are crucial to determine whether existing daily dietary recommendations for micronutrients are quantitatively inadequate, excessive, or appropriate when energy balance remains negative over extended durations.

6.
Clin Nutr ; 41(8): 1724-1734, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777111

RESUMO

BACKGROUND & AIMS: Previous studies suggest an interaction of CD36 genetic variant rs1527483 with n-3 polyunsaturated fatty acids (PUFAs) to modulate blood lipids. However, successful replication is lacking and the role of gut microbiome remains unclear. Here, we aimed to replicate these gene-diet interactions on blood lipids and investigate their possible associations with gut microbiome. METHODS: We evaluated the n-3 PUFA-rs1527483 interaction on blood lipids in two population-based cohorts (n = 4,786). We profiled fecal microbiome and short-chain fatty acids among 1,368 participants. The associations between n-3 PUFAs and bacterial alpha-diversity, taxonomies and short-chain fatty acids by rs1527483 genotypes were analyzed using regression models. RESULTS: CD36 rs1527483-GG carriers responded better to high n-3 PUFA exposure; higher blood HDL-C (beta (95% CI): 0.05 (0.01, 0.08) mmol/L) and lower TG (log-transformed, beta (95% CI): -0.08 (-0.14, -0.02)) were observed among participants whose n-3 PUFA exposure ranked in the top quartile comparing with those in the bottom quartile. We identified docosahexaenoic acid (DHA) as the driven individual n-3 PUFA biomarker, which showed interaction with rs1527483. Among the rs1527483-GG carriers, but not other genotype groups, DHA exposure was positively associated with bacterial Faith's phylogenetic diversity, Observed OTUs, Shannon's diversity index, Dorea, Coriobacteriales Incertae Sedis spp, and fecal propionic acid levels. Another independent longitudinal cohort validated the DHA-rs1527483 interaction on gut microbiome. The identified microbial features were correlated with blood lipids, and the host biosynthesis and metabolism pathways of bile acids and aromatic amino acids. CONCLUSIONS: The present study found that higher n-3 PUFAs were associated with improved blood lipids and gut microbial features only among rs1527483-GG carriers. These findings highlight a potential role of gut microbiome to link the CD36 genetic variant, n-3 PUFAs and blood lipids, revealing a new research direction to interpret the gene-diet interaction for cardiometabolic health.


Assuntos
Antígenos CD36/genética , Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Bactérias , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Insaturados , Microbioma Gastrointestinal/genética , Humanos , Filogenia
7.
Nutrients ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925473

RESUMO

Little is known about changes in plasma metabolome profiles during the oral glucose tolerance test (OGTT) in Chinese. We aimed to characterize plasma metabolomic profiles at 0 and 2 h of OGTT and their changes in individuals of different glycemic statuses. A total of 544 metabolites were detected at 0 and 2 h of OGTT by a nontarget strategy in subjects with normal glucose (n = 234), prediabetes (n = 281), and newly diagnosed type 2 diabetes (T2D) (n = 66). Regression model, mixed model, and partial least squares discrimination analysis were applied. Compared with subjects of normal glucose, T2D cases had significantly higher levels of glycerone at 0 h and 22 metabolites at 2 h of OGTT (false discovery rate (FDR) < 0.05, variable importance in projection (VIP) > 1). Seven of the twenty-two metabolites were also significantly higher in T2D than in prediabetes subjects at 2 h of OGTT (FDR < 0.05, VIP > 1). Two hours after glucose challenge, concentrations of 35 metabolites (normal: 18; prediabetes: 23; T2D: 13) significantly increased (FDR < 0.05, VIP > 1, fold change (FC) > 1.2), whereas those of 45 metabolites (normal: 36; prediabetes: 29; T2D: 18) significantly decreased (FDR < 0.05, VIP > 1, FC < 0.8). Distinct responses between cases and noncases were detected in metabolites including 4-imidazolone-5-acetate and 4-methylene-L-glutamine. More varieties of distinct metabolites across glycemic statuses were observed at 2 h of OGTT compared with fasting state. Whether the different patterns and responsiveness of certain metabolites in T2D reflect a poor resilience of specific metabolic pathways in regaining glucose homeostasis merits further study.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Teste de Tolerância a Glucose/métodos , Metaboloma , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , China , Feminino , Teste de Tolerância a Glucose/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade
8.
Nat Genet ; 53(6): 840-860, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059833

RESUMO

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Assuntos
Glicemia/genética , Característica Quantitativa Herdável , População Branca/genética , Alelos , Epigênese Genética , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Herança Multifatorial/genética , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética
9.
Arthritis Care Res (Hoboken) ; 72(9): 1305-1314, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233264

RESUMO

OBJECTIVE: Little is known about how metabolic perturbations are linked to hyperuricemia in the general population. Therefore we aimed to examine metabolomics profiles in relation to uric acid change and incident hyperuricemia. METHODS: This study included 1,621 community-dwelling Chinese participants ages 50-70 years without hyperuricemia at baseline, with a mean duration of follow-up of 6 years. A total of 56 metabolites (22 amino acids and 34 acylcarnitines) at baseline were quantified by gas or liquid chromatography coupled to mass spectrometry. Annual change in uric acid was calculated, and incident hyperuricemia was defined as plasma uric acid >420 µmoles/liter in men and >360 µmoles/liter in women. RESULTS: The mean ± SD annual change in uric acid was 9.6 ± 12.1 µmoles/liter and the incidence of hyperuricemia was 23.1% (375 of 1,621). After adjustment for conventional risk factors, 9 metabolites (cysteine, glutamine, phenylalanine, threonine, and long-chain acylcarnitines C14:1OH, C18, C18:2, C20, and C20:4) were significantly associated with uric acid change (Bonferroni corrected P < 0.05) and with incident hyperuricemia (relative risks ranged from 1.14 to 1.21 per SD increment of metabolites; P < 0.05). A network analysis showed significant associations between the module containing long-chain acylcarnitines and incident hyperuricemia. Moreover, levels of these 9 metabolites were specifically correlated with intake of foods, including red and processed meat or soy products. CONCLUSION: Plasma cysteine, glutamine, phenylalanine, threonine, and long-chain acylcarnitines are positively associated with incident hyperuricemia. The levels of these metabolites may be partially driven by intakes of meat and soy products that are associated with hyperuricemia.


Assuntos
Aminoácidos/sangue , Carnitina/análogos & derivados , Hiperuricemia/epidemiologia , Ácido Úrico/sangue , Idoso , Carnitina/sangue , China/epidemiologia , Feminino , Humanos , Hiperuricemia/sangue , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
Nat Commun ; 9(1): 5052, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487518

RESUMO

Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.


Assuntos
Pressão Sanguínea/fisiologia , Povo Asiático , Pressão Sanguínea/genética , Europa (Continente) , Feminino , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , População Branca
11.
Nat Genet ; 50(4): 559-571, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632382

RESUMO

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.


Assuntos
Diabetes Mellitus Tipo 2/genética , Alelos , Mapeamento Cromossômico/estatística & dados numéricos , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , População Branca/genética , Sequenciamento do Exoma/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA