Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(9): e1007334, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265731

RESUMO

G-quadruplex (G4), formed by repetitive guanosine-rich sequences, is known to play various key regulatory roles in cells. Herpesviruses containing a large double-stranded DNA genome show relatively higher density of G4-forming sequences in their genomes compared to human and mouse. However, it remains poorly understood whether all of these sequences form G4 and how they play a role in the virus life cycle. In this study, we performed genome-wide analyses of G4s present in the putative promoter or gene regulatory regions of a 235-kb human cytomegalovirus (HCMV) genome and investigated their roles in viral gene expression. We evaluated 36 putative G4-forming sequences associated with 20 genes for their ability to form G4 and for the stability of G4s in the presence or absence of G4-stabilizing ligands, by circular dichroism and melting temperature analyses. Most identified sequences formed a stable G4; 28 sequences formed parallel G4s, one formed an antiparallel G4, and four showed mixed conformations. However, when we assessed the effect of G4 on viral promoters by cloning the 20 putative viral promoter regions containing 36 G4-forming sequences into the luciferase reporter and monitoring the expression of luciferase reporter gene in the presence of G4-stabilizing chemicals, we found that only 9 genes were affected by G4 formation. These results revealed promoter context-dependent gene suppression by G4 formation. Mutational analysis of two potential regulatory G4s also demonstrated gene suppression by the sequence-specific G4 formation. Furthermore, the analysis of a mutant virus incapable of G4 formation in the UL35 promoter confirmed promoter regulation by G4 in the context of virus infection. Our analyses provide a platform for assessing G4 functions at the genomic level and demonstrate the properties of the HCMV G4s and their regulatory roles in viral gene expression.


Assuntos
Citomegalovirus/genética , Fenômenos Biofísicos , Células Cultivadas , Citomegalovirus/patogenicidade , DNA Viral/química , DNA Viral/genética , Quadruplex G , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Genoma Viral , Estudo de Associação Genômica Ampla , Humanos , Mutação , Regiões Promotoras Genéticas , Proteínas Virais/genética
2.
Nucleic Acids Res ; 46(19): 10504-10513, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184200

RESUMO

BZ junctions, which connect B-DNA to Z-DNA, are necessary for local transformation of B-DNA to Z-DNA in the genome. However, the limited information on the junction-forming sequences and junction structures has led to a lack of understanding of the structural diversity and sequence preferences of BZ junctions. We determined three crystal structures of BZ junctions with diverse sequences followed by spectroscopic validation of DNA conformation. The structural features of the BZ junctions were well conserved regardless of sequences via the continuous base stacking through B-to-Z DNA with A-T base extrusion. However, the sequence-dependent structural heterogeneity of the junctions was also observed in base step parameters that are correlated with steric constraints imposed during Z-DNA formation. Further, circular dichroism and fluorescence-based analysis of BZ junctions revealed that a base extrusion was only found at the A-T base pair present next to a stable dinucleotide Z-DNA unit. Our findings suggest that Z-DNA formation in the genome is influenced by the sequence preference for BZ junctions.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , DNA/química , Conformação de Ácido Nucleico , Domínios Proteicos , Proteínas de Ligação a RNA/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Pareamento de Bases , Sequência de Bases , Dicroísmo Circular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA de Forma B/genética , DNA de Forma B/metabolismo , DNA Forma Z/genética , DNA Forma Z/metabolismo , Humanos , Modelos Moleculares , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Nucleic Acids Res ; 42(9): 5937-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682817

RESUMO

Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the ß-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the ß-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate.


Assuntos
DNA Forma Z/química , Proteínas de Peixes/química , Carpa Dourada , eIF-2 Quinase/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Cloreto de Sódio/química
4.
Mol Cells ; 39(4): 316-21, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26923188

RESUMO

The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.


Assuntos
Osteogênese/efeitos dos fármacos , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/química , Animais , Arginina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Desenho de Fármacos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Peptidomiméticos/química , Ligação Proteica , Relação Estrutura-Atividade
5.
J Mol Biol ; 426(14): 2594-604, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813121

RESUMO

Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.


Assuntos
Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , DNA Forma Z/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Adenosina Desaminase/genética , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Quadruplex G , Regulação da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA