Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(10): 335, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215822

RESUMO

Sb-resistant strains can detoxify antimony through metabolic mechanisms such as oxidation and affect the migration, transformation, and ultimate fate of antimony in the environment. In this study, a strain of Sb-resistant fungi, Rhodotorula glutinis sp. Strain J5, was isolated from Xikuangshan mine and its growth characteristics, gene expression differences, and functional annotation under Sb(III) stress were further investigated to reveal the mechanism of resistance to Sb(III). We identified strain J5 as belonging to the Rhodotorula glutinis species optimally growing at pH 5.0 and at 28 °C of temperature. According to gene annotation and differential expression, the resistance mechanism of Strain J5 includes: reducing the endocytosis of antimony by aquaporin AQP8 and transmembrane transporter pst, enhancing the efflux of Sb(III) by the gene expression of acr2, acr3 and ABC, improving the oxidation of Sb(III) by iron-sulfur protein and Superoxide dismutase (SOD), glutathione (GSH) and cysteine (Cys) chelation, methylation of methyltransferase and N-methyltransferase, accelerating cell damage repair and EPS synthesis and other biochemical reaction mechanisms. FT-IR analysis shows that the -OH, -COOH, -NH, -PO, C-O, and other active groups of Strain J5 can be complexed with Sb(III), resulting in chemical adsorption. Strain J5 displays significant resistance to Sb(III) with the MIC of 1300 mg/L, playing a crucial role in the global biochemical transformation of antimony and its potential application in soil microbial remediation.


Assuntos
Antimônio , Rhodotorula , Rhodotorula/genética , Rhodotorula/efeitos dos fármacos , Rhodotorula/metabolismo , Rhodotorula/isolamento & purificação , Antimônio/farmacologia , Farmacorresistência Fúngica/genética , Mineração , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
J Environ Manage ; 365: 121610, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955048

RESUMO

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.


Assuntos
Peróxido de Hidrogênio , Águas Residuárias , Águas Residuárias/química , Peróxido de Hidrogênio/química , Adsorção , Poluentes Químicos da Água/química , Compostos de Anilina/química , Cério/química
3.
Ecotoxicol Environ Saf ; 256: 114916, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060800

RESUMO

In sediment environments, manganese (Mn) minerals have high dissolved organic matter (DOM) affinities, and could regulate the changes of DOM constituents and reactivity by fractionation. However, the effects of DOM fractionation by Mn minerals on the contaminant behaviors remain unclear. Herein, the transformations of mineral phases, DOM properties, and Cd(II) binding characteristics to sediment DOM before and after adsorption by four Mn oxides (δ-MnO2, ß-MnO2, γ-MnOOH, and Mn3O4) were investigated using multi-spectroscopic tools. Results showed a subtle structural variation of Mn oxides in response to DOM reduction, and no phase transformations were observed. Two-dimensional correlation spectroscopy based on synchronous fluorescence spectra and Fourier transform infrared spectroscopy indicated that tryptophan-like substances and the amide (II) N-H groups could preferentially interact with Cd(II) for the original DOM. Nevertheless, preferential bonding of Cd(II) to tyrosine-like substances and phenolic OH groups was exhibited after fractionations by Mn oxides. Furthermore, the binding stability and capacity of each DOM fraction to Cd(II) were decreased after fractionation based on the modified Stern-Volmer equation. These differences may be attributed to DOM molecules with high aromaticity, hydrophobicity, molecular weight, and amounts of O/N-containing group were preferentially removed by Mn oxides. Overall, the environmental hazard of Cd will be more severe after DOM fractionation on Mn minerals. This study facilitates a better understanding of the Cd geochemical cycle in lake sediments under the DOM-mineral interactions, and recommends being careful with outbreaks of aquatic Cd pollution when sediments are rich in dissolved protein-like components and Mn minerals.


Assuntos
Cádmio , Manganês , Cádmio/química , Óxidos , Compostos de Manganês , Lagos/química , Minerais/química , Substâncias Húmicas/análise
4.
Environ Geochem Health ; 45(4): 1117-1131, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34792674

RESUMO

The 2017 ban on the waste import and new policies for the waste management sector in mainland China had wide-spread impact. After decades of poor environmental and public health impacts from the sector, a study is needed which focuses on policies updates and waste management. This provides a direction for the survival of local waste management industries and consider similarities with the ban promulgated in China on the restriction of waste import from other countries. We review the waste management situation in China before national legislation prevented the import of waste, highlight the status of landfill mining in China, and review the dynamics of domestic policies before and after the promulgation of the ban in China. The impact of the COVID19 pandemic on the waste management system is starting to emerge, providing both challenges and opportunities for the sector in China. We see the impact of the ban on the range of imported waste and domestically generated materials. The ban results in price increases for domestic recycling that forces companies to introduce more formal recycling processes and to drive the consumption behaviours to more reasonable and environmentally friendly options. The driver in China is to reduce pollution in the environment and improve health, but a negative impact has been from increased landfill mining which has impeded the original aim of the waste ban and requires further technological development. The dynamic of domestic policies in China shows higher level of activity of updates and revisions or introduction of new policies from 2015 onwards and the concept of 'zero waste cities' brings new hope for improvement of the Chinese waste management system. The pandemic also suggests an important step to establish sustainable management systems despite evidence of increased "fly-tipping". The rebound of the waste ban may have stimulated in the short term negative impacts on local environments both in China and internationally.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Gerenciamento de Resíduos/métodos , China , Poluição Ambiental , Saúde Pública , Reciclagem
5.
Environ Geochem Health ; 44(10): 3555-3570, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34633597

RESUMO

Xikuangshan antimony mine in Lengshuijiang, China, has been developed for many years, and stormwater runoff contains high levels of potentially toxic elements (PTEs). The aims were to find the sources of PTEs by statistical analysis and local spatial distribution of industrial activity and simulate transport process of PTEs in the soil to evaluate pollution extent and health risk. The PTEs in this study were antimony, cadmium, zinc, nickel, lead, and copper. The result showed antimony and a minor portion of zinc were derived from the antimony processing activities, copper derived from agricultural activities, and most of the zinc came from the zinc industry. Nickel, lead, and cadmium came from a mixed source of atmospheric transportation, vehicle transport, and other local industrial activities. Besides, antimony was the most hazardous element in this mining area. In the fourth year, the groundwater in the whole area was uncontaminated by antimony, and there was no non-carcinogenic health risk. Except for the southern area of Lianxi River and the area enclosed by South mine, Zhumushan village, and Tailing Dam, there was a non-carcinogenic risk at year 5.4. These sources of PTEs found in the stormwater runoff are useful for locals to control of PTEs pollution. And the health risk assessment method helps evaluate the risk of PTEs caused by stormwater runoff.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes do Solo , Antimônio/análise , Cádmio/análise , China , Cobre/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Níquel/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Zinco/análise
6.
Environ Geochem Health ; 43(7): 2679-2697, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32918158

RESUMO

To evaluate the potential of sepiolite-based materials to resolve environmental pollution problems, a study is needed which looks at the whole life cycle of material application, including the residual value of material classified as waste from the exploitation of sepiolite deposits in the region or from its processing and purification. This would also maximize value from the exploitation process and provide new potential for local waste management. We review the geographical distribution of sepiolite, its application in the treatment of potentially toxic elements in soil and across the wider landscape, an assessment of modification and compositional variation of sepiolite-based applications within site remediation and wastewater treatment. The potential of sepiolite-based technologies is widespread and a number of processes utilize sepiolite-derived materials. Along with its intrinsic characteristics, both the long-term durability and the cost-effectiveness of the application need to be considered, making it possible to design ready-to-use products with good market acceptance. From a critical analysis of the literature, the most frequently associated terms associated with sepiolite powder are the use of lime and bentonite, while fly ash ranked in the top ten of the most frequently used material with sepiolite. These add improved performance for the inclusion as a soil or wastewater treatment options, alone or applied in combination with other treatment methods. This approach needs an integrated assessment to establish economic viability and environmental performance. Applications are not commonly evaluated from a cost-benefit perspective, in particular in relation to case studies within geographical regions hosting primary sepiolite deposits and wastes that have the potential for beneficial reuse.


Assuntos
Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Silicatos de Magnésio/química , Poluentes do Solo/análise , Bentonita/química , Compostos de Cálcio/química , Cinza de Carvão/química , Óxidos/química , Solo/química , Gerenciamento de Resíduos , Purificação da Água
7.
J Fluoresc ; 30(5): 1271-1279, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767189

RESUMO

Chemical oxidation is a key technique used in dye wastewater treatment via the formation of hydroxyl radicals. To obtain optimal treatment effects, it is critical to understand the interaction of the molecular structure of the dye with the hydroxyl radical. We evaluated fluorescence excitation-emission matrix spectroscopy to study the decay of an azo-dye (Procion Red MX-5B) by a hydroxyl radical generated from catalytic Fe (III) on H2O2. Results showed that fluorescence signal reliably indicated the variations of the chemical groups and components during degradation, and the degradation could be divided into three stages: initial degradation (decolorisation), rapid intermediate degradation, and final degradation. Under control of uncorrected matrix correlation, the fluorescence fractions could be fitted successfully by parallel factor model (PARAFAC) model: two fluorescence components in initial degradation including mono substituted benzene and mono substituted naphthalene, three components as multi substituted benzene in rapid degradation, and no components could be resolved in the final degradation. The results from the study demonstrate the utility fluorescence characterization of dye degradation mechanisms and enhance the understanding of the degradation mechanisms.


Assuntos
Corantes/química , Catálise , Compostos Férricos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/síntese química , Radical Hidroxila/química , Estrutura Molecular , Oxirredução , Espectrometria de Fluorescência , Águas Residuárias/química
8.
J Fluoresc ; 30(6): 1383-1396, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32997315

RESUMO

Fluorescence excitation-emission matrix spectroscopy (EEMs) has become a very popular technique in characterization of aquatic dissolved organic matter (DOM) coupled with a parallel factor (PARAFAC) model, denoted as (EEMs-PARAFAC). This research addresses the poorly researched relationship correlation between dissolved ions and fluorescence in a natural water environment. The relationship between the EEMs-PARAFAC components and ionic composition was studied in freshwater lakes, rivers, and seawater from locations in China. The natural water environment is different from a simulated environment having a fixed ionic composition. We used electrical conductivity (EC) to reflect the ionic strength as an indicator to evaluate the relationship in a series of water bodies. Results show that the EC generally had a positive correlation with DOM in natural water environment, but no correlation was found with water from the highly saline Yellow Sea. The Chaohu Lake samples contained one component having a significant negative correlation with EC, i.e., r > 0.6, p < 0.05, while other surface waters contained components having both positive and negative correlations (r > 0.5, p < 0.05). The negative correlation with EC also highlighted that humic acid-like components and protein-like materials (c1-c3) were positively correlated with DOM, while the protein-like component (c4) was negatively correlated with DOM. The EC equation proposed provided a good fit with the EC values of surface waters. The use of EC would be a useful and rapid method for analyzing the variation in the fluorescence component and its effect on water quality. This study highlights the need to account for variation in EC when assessing EEMs-PARAFAC of natural waters.

9.
Curr Microbiol ; 77(9): 2071-2083, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32474703

RESUMO

How to effectively remove excess Sb(III) in the water environment by biosorption is receiving close attention in the international scientific community. To obtain the maximum biosorption efficiency, response surface methodology (RSM) was employed to optimize a total of 13 factors for biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The mechanism of biosorption and bioaccumulation was also studied. The results showed that biosorption reached 56.83% under the optimum conditions. Besides, pH, Fe2+, and temperature are significant influencing factors, and control of Ca2+ and Fe2+ has a beneficial impact on Sb(III) biosorption. The characterization explained that physical adsorption occurred readily on the loose and porous surface of DJHN070401 where carboxyl, amidogen, phosphate group, and polysaccharide C-O functional groups facilitated absorption by complexation with Sb(III), accompanied by ion exchange of Na+, Ca2+ ions with Sb(III). It was also noted that the living cell not only improved the removal efficiency in the presence of metabolic inhibitors but also prevented intracellular Sb(III) being re-released into the environment. The results of this study underpin improved and efficient methodology for biosorption of Sb(III) from wastewater.


Assuntos
Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Rhodotorula , Águas Residuárias , Poluentes Químicos da Água/análise
10.
Ecotoxicol Environ Saf ; 203: 111055, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888617

RESUMO

The pollution level of potentially toxic elements (PTEs) in surface soils is detrimental to the ecosystem and human health. In this research, various indices such as an index of geo-accumulation (Igeo), contamination factor (CF), degree of contamination (DC), and principal component analysis (PCA) were implemented to identify and evaluate the soil PTEs pollution; and then human health risk assessment model used to establish the link between heavy metals pollution and human health in the urban region of south India. Results exhibited that the mean concentration of Cr, Cu, Ni and Zn were found to be 1.45-6.03 times greater than the geochemical background values. Cr and Cu were the most profuse PTEs measured in the soils. The pollution indices suggest that soil of the study region is mainly moderate to highly polluted. The non-carcinogenic health risk assessment proposed by the United States Environmental Protection Agency (USEPA) suggested the mean hazard indices (HIs) were below one which denotes no significant of non-carcinogenic risks to both children and adults. Furthermore, carcinogenic risk assessment results advised ~80% of cancer risk was caused by Cr contents, while other heavy metals indicate that neither children nor adults in the study region were of carcinogenic risks.


Assuntos
Carcinógenos/análise , Monitoramento Ambiental/métodos , Substâncias Perigosas/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Adulto , Carcinógenos/toxicidade , Criança , Ecossistema , Substâncias Perigosas/toxicidade , Humanos , Índia , Metais Pesados/toxicidade , Medição de Risco , Poluentes do Solo/toxicidade , Estados Unidos , United States Environmental Protection Agency , Urbanização
11.
Water Sci Technol ; 82(4): 747-758, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32970626

RESUMO

The eco-friendly and non-toxic natural organic substance, insolubilized humic acid (IHA), was used to remove Mn(II) from aqueous solutions. The adsorption characteristics were studied through a series of static adsorption tests. The results show that conditions such as the dose, the pH of the solution and the initial concentration of Mn(II) all affect removal efficiency, and the optimal pH value was 5.5. The sorption process for Mn(II) on IHA conforms to the pseudo-second-order adsorption kinetic model and intra-particle diffusion is not the only factor affecting the adsorption rate. Both Langmuir and Freundlich models can describe this adsorption behavior, and the experimental maximum adsorption capacity of IHA was 52.87 mg/g under optimal conditions. The thermodynamic analysis of adsorption shows that the adsorption process is a non-spontaneous endothermic physical reaction. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to characterize the samples, it was found that as IHA successfully adsorbed Mn(II), the surface morphology of IHA changed after the adsorption reaction. The adsorption mechanism for Mn(II) on IHA is to provide electron pairs for carboxyl, phenolic hydroxyl and other functional groups to form stable complexes with Mn(II).


Assuntos
Poluentes Químicos da Água/análise , Adsorção , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
12.
Environ Geochem Health ; 42(7): 1965-1976, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31705399

RESUMO

The pollution from large-scale manganese mining and associated industries in Xiangtan (south Central China) has created a significant burden on the local environment. The proximity of mining, and other industrial activity to the local population, is of concern and impact of past industrial on the food chain was evaluated by the assessment of common food groups (rice, soybean, and sweet potato), and the associated soil and water in the region. We focused on specific potentially toxic elements (PTEs): Mn, Pb, Cd, Cr, Cu, and Zn associated with industrial activity, identifying the distribution of pollution, the potential significance of total health index (THI) for local people and its spatial distribution. The study area showed severe contamination for Mn, followed by Cd and Pb, while other PTEs showed relatively light levels of pollution. When analyzing the impact on crops exceeding the tolerance limit, the dominant PTEs were Mn, Cd, and Pb, with lower significance for Zn, Cu, and Cr. The average THI value for adults is 4.63, while for children, is 5.17, greatly exceeding the recommended limit (HQ > 1), confirming a significant health risk. In the spatial distribution of the THI, the region shows strong association with the transport and industrial processing infrastructure. Long-term management needs to consider remediation aligned to specific industrial operations and enhance contamination control measures of ongoing activity.


Assuntos
Produtos Agrícolas/química , Metais Pesados/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Adulto , Criança , China , Água Potável/análise , Monitoramento Ambiental , Cadeia Alimentar , Contaminação de Alimentos/análise , Humanos , Indústrias , Ipomoea batatas/química , Metais Pesados/toxicidade , Mineração , Oryza/química , Medição de Risco , Poluentes do Solo/toxicidade , Glycine max/química , Poluentes Químicos da Água/toxicidade
13.
Environ Geochem Health ; 42(4): 1057-1068, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31119572

RESUMO

The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.


Assuntos
Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Desenvolvimento Industrial , Metais Pesados/análise , Análise Multivariada , Rios , Escócia , Análise Espaço-Temporal
14.
Environ Monit Assess ; 191(3): 192, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810865

RESUMO

There is a pressing need for innovative waste management approaches as environmental regulations become more stringent worldwide alongside increasing demand for a more circular economy. Sequential chemical extraction (SE) analysis, which has previously been applied to environmental media such as soils and sediments, offers the potential to provide an understanding of the composition of solid steel processing by products, aiding the waste classification process and improving environmental protection. The definition of seven-phase associations through a SE method evaluated in this study were for (1) water soluble, (2) ion exchangeable, (3) carbonate, (4) amorphous Fe-Mn oxides, (5) crystalline Fe-Mn oxides, (6) sulphides and (7) silicate residues. Steel waste by-products (flue dust and filter cake) were evaluated for both extracted components (ICP analysis) and residual phases (using powder X-ray diffraction, SEM and FTIR), to model the transformations taking place during extraction. The presence and removal of important potentially toxic element (PTE) host solid phases were confirmed during extraction. The SE protocol provides key information, particularly for the association of potentially toxic elements with the first three extracts, which are most sensitive in waste management processes. The water-soluble phase is the most available followed by ion-exchangeable and carbonate fractions, all representing phases more sensitive to environmental change, in particular to pH. This study demonstrates that the distribution of potentially toxic elements such as zinc, lead and copper between sensitive and immobile phases can be reliably obtained in technological process by-products. We demonstrate that despite heterogeneity as a major variable, even for fine particulate matter, SE can provide more refined classification with information to identify reuse potential and ultimately minimise hazardous waste streams.


Assuntos
Fracionamento Químico/métodos , Monitoramento Ambiental , Resíduos Perigosos/análise , Resíduos Industriais/análise , Aço , Gerenciamento de Resíduos/métodos , Cobre/análise , Poeira/análise , Material Particulado/análise , Solo/química , Poluentes do Solo/análise , Sulfetos/análise , Zinco/análise
15.
Environ Monit Assess ; 191(5): 267, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955117

RESUMO

This study focuses on the assessment of surface soils from industrially polluted region (El Tebbin) of southern Cairo, Egypt. The impact of agricultural, residential and industrial land use on soils developed from Nile river sediments has significantly compromised their function. Previous evidence has shown that the food chain is contaminated and enhances risk of contaminant exposure of the residential communities. This study investigates factors controlling potentially toxic element (PTE) distribution (Co, Ni, Pb, Cd, Zn, Cr and Cu) in El Tebbin soils and provide estimates of their mobility and bioavailability. The PTE concentrations are characterised by high variability as result of the variety of natural and anthropogenic influences. Highest spatial variability is found for Zn, Cd, Pb and Cu (C.V = 260.0%, 280.4%, 140.8% and 159.6% respectively) and enrichment factors indicate strong anthropogenic inputs. For Co and Ni, relatively low spatial variability (C.V = 65.8% and 45.0% respectively) with depletion in Ni suggests a relatively minor contribution from anthropogenic sources. For Cr, a more uniform distribution pattern showing depletion to minimal enrichment across the study area (C.V = 19.2%) reflects almost exclusive lithogenic control. Using principle component analysis (PCA) to explore concentration data reveals that the major inputs affecting PTE distribution are modified by primary soil properties (texture and pH). Their relative bioavailability (identified through sequential chemical extraction) relates strongly to local input sources. Those elements dominated by lithogenic input (Ni and Co) were found predominantly in soil residual fractions (95.6% and 90.5% respectively), while elements with stronger anthropogenic contributions (Cd, Zn, Pb and Cu) showed much higher portion in the more mobile and bioavailable fractions obtained from sequential chemical extraction, with average proportions of the totals being 62.6%, 57%, 40.7% and 39.2% respectively. Those PTEs with strong anthropogenic influence are potentially much more mobile for bioaccumulation in food chain with increased health risk for exposed residents and are confirmed by elevated concentrations of Cd, Zn, Pb and Cu recorded in local plant species. The main pollution sources were further highlighted by cluster analysis and showed vehicle traffic and specific industrial activities but which varied significantly from site to site. The identification of sources through the approach developed here allows prioritisation of monitoring and regulatory decisions by the local government to reduce further environmental exposure of the local population.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Agricultura , Egito , Poluição Ambiental/análise , Rios/química , Solo/química
16.
Environ Geochem Health ; 40(1): 395-413, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28236208

RESUMO

A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index-expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004-2013) than in the first 10 years (1979-1988). Only 84 (~9%) articles fell within the "earth and health" only and "earth, health and other" categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged between students from different disciplines. In order to achieve multidisciplinarity in practise, it is imperative that scientific communities and research agencies do more to encourage interaction and integration between researchers from different disciplines. This must develop from educational institutions seeing opportunities to improve graduate skills in an increasingly diverse research landscape.


Assuntos
Arsênio/análise , Água Potável/química , Projetos de Pesquisa , Saúde Ambiental , Geologia
17.
Environ Monit Assess ; 190(12): 715, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421140

RESUMO

Soils play a vital role in the quality of the urban environment and the health of its residents. City soils and street dusts accumulate various contaminants and particularly potentially toxic elements (PTEs) from a variety of human activities. This study investigates the current condition of elemental concentration in the urban soils of Hamedan, the largest and the fastest-growing city in western Iran. Thirty-four composite soil samples were collected from 0 to 10 cm topsoil of various land uses in Hamedan city and were analyzed for total concentration of 63 elements by ICP-MS. The possible sources of elemental loadings were verified using multivariate statistical methods (principal component analysis and cluster analysis) and geochemical indices. The spatial variability of the main PTEs was mapped using geographic information system (GIS) technique. The results revealed a concentration for As, Co, Cr, Mn, Mo, Ni, and V in the soil samples comparable to the background values as well as a range of associations among these elements in a single component suggesting geogenic sources related to geological and pedogenic processes, while the soils mostly presented a moderate to considerable enrichment/contamination of Cd, Zn, Pb, and Sb and moderate enrichment/contamination of Cu, Zn, and Mo. It was found that anthropogenic factors, vehicular traffic in particular, control the concentration of a spectrum of elements that are typical of human activities, i.e., Cd, Cu, Hg, Pb, Sb, and Zn. Lead and Sb were both the most enriched elements in soils with no correlation with land use highlighting general urban emissions over time and the impact of transport networks directly on soil quality. The highest concentrations of As were recorded in the southern part of the city reflecting the influence of metamorphic rocks. The effect of the geological substrate on the Co and Ni contents was confirmed by their maximum concentrations in the city's marginal areas. However, high spatial variability of urban elements' contents displayed the contribution of various human activities. In particular, the increased concentration of Cd, Sb, and Pb was found to be consistent with the areas where vehicular traffic is heaviest.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Geologia , Humanos , Irã (Geográfico)
18.
J Fluoresc ; 27(6): 2069-2094, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28828542

RESUMO

Natural organic matter (NOM) found in water sources is broadly defined as a mixture of polyfunctional organic molecules, characterized by its complex structure and paramount influence on water quality. Because the inevitable release of pollutants into aquatic environments due to an ineffective control of industrial and agricultural pollution, the evaluation of the interaction of NOM with heavy metals, nanoparticles, organic pollutants and other pollutants in the aquatic environment, has greatly increased. Three-dimensional (3-D) fluorescence has the potential to reveal the interaction mechanisms between NOM and pollutants as well as the source of NOM pollution. In water purification engineering system, the 3-D fluorescence can indicate the variations of NOM composition and gives an effective prediction of water quality as well as the underline water purification mechanisms. Inadequately treated NOM is a cause of precursors of disinfection byproducts (DBPs), posing a potential threat to human health. Effective control and measurement/evaluation of NOM have long been an important factors in the prevention of water pollution. Overall, 3-D fluorescence allows for a rapid identification of organic components thus indicating possible sources of water pollution, mechanisms of pollutant interactions, and possible DBPs formed during conventional treatment of this water. This article reviews the 3-D fluorescence characteristics of NOM in natural water and typical water purification systems. The 3-D fluorescence was effective for indicating the variabilities in NOM composition and chemistry thus providing a better understanding of NOM in natural water system and water engineering system.


Assuntos
Fluorescência , Compostos Orgânicos/análise , Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Humanos
19.
Water Sci Technol ; 74(2): 393-401, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438244

RESUMO

An Fe-Cu binary oxide was fabricated through a simple co-precipitation process, and was used to remove Sb(III) from aqueous solution. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and N2 adsorption-desorption measurements demonstrated that the Fe-Cu binary oxide consisted of poorly ordered ferrihydrite and CuO, and its specific surface area was higher than both iron oxide and copper oxide. A comparative test indicated that Fe/Cu molar ratio of prepared binary oxide greatly influenced Sb(III) removal and the optimum Fe/Cu molar ratio was about 3/1. Moreover, a maximum adsorption capacity of 209.23 mg Sb(III)/g Fe-Cu binary oxide at pH 5.0 was obtained. The removal of Sb(III) by Fe-Cu binary oxide followed the Freundlich adsorption isotherm and the pseudo-second-order kinetics in the batch study. The removal of Sb(III) was not sensitive to solution pH. In addition, the release of Fe and Cu ions to water was very low when the pH was greater than 6.0. X-ray photoelectron spectroscopy analysis confirmed that the Sb(III) adsorbed on the surface was not oxidized to Sb(V).


Assuntos
Antimônio/química , Cobre/química , Compostos Férricos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cinética , Oxirredução
20.
Environ Microbiol ; 17(8): 2922-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753337

RESUMO

Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs.


Assuntos
Florestas , Fungos/metabolismo , Pentaclorofenol/metabolismo , Quercus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biodiversidade , Poluição Ambiental , Fungos/isolamento & purificação , Solo/química , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA