Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(5): 1903-18, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062819

RESUMO

NpmA, a methyltransferase that confers resistance to aminoglycosides was identified in an Escherichia coli clinical isolate. It belongs to the kanamycin-apramycin methyltransferase (Kam) family and specifically methylates the 16S rRNA at the N1 position of A1408. We determined the structures of apo-NpmA and its complexes with S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.4, 2.7 and 1.68 Å, respectively. We generated a number of NpmA variants with alanine substitutions and studied their ability to bind the cofactor, to methylate A1408 in the 30S subunit, and to confer resistance to kanamycin in vivo. Residues D30, W107 and W197 were found to be essential. We have also analyzed the interactions between NpmA and the 30S subunit by footprinting experiments and computational docking. Helices 24, 42 and 44 were found to be the main NpmA-binding site. Both experimental and theoretical analyses suggest that NpmA flips out the target nucleotide A1408 to carry out the methylation. NpmA is plasmid-encoded and can be transferred between pathogenic bacteria; therefore it poses a threat to the successful use of aminoglycosides in clinical practice. The results presented here will assist in the development of specific NpmA inhibitors that could restore the potential of aminoglycoside antibiotics.


Assuntos
Proteínas de Escherichia coli/química , Metiltransferases/química , RNA Ribossômico 16S/química , Subunidades Ribossômicas Menores de Bactérias/química , Adenina/química , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Humanos , Resistência a Canamicina , Metilação , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Pegadas de Proteínas , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química
2.
Nucleic Acids Res ; 38(12): 4120-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20194115

RESUMO

Sgm (Sisomicin-gentamicin methyltransferase) from antibiotic-producing bacterium Micromonospora zionensis is an enzyme that confers resistance to aminoglycosides like gentamicin and sisomicin by specifically methylating G1405 in bacterial 16S rRNA. Sgm belongs to the aminoglycoside resistance methyltransferase (Arm) family of enzymes that have been recently found to spread by horizontal gene transfer among disease-causing bacteria. Structural characterization of Arm enzymes is the key to understand their mechanism of action and to develop inhibitors that would block their activity. Here we report the structure of Sgm in complex with cofactors S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.0 and 2.1 A resolution, respectively, and results of mutagenesis and rRNA footprinting, and protein-substrate docking. We propose the mechanism of methylation of G1405 by Sgm and compare it with other m(7)G methyltransferases, revealing a surprising diversity of active sites and binding modes for the same basic reaction of RNA modification. This analysis can serve as a stepping stone towards developing drugs that would specifically block the activity of Arm methyltransferases and thereby re-sensitize pathogenic bacteria to aminoglycoside antibiotics.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , RNA Ribossômico 16S/química , Sequência de Aminoácidos , Aminoglicosídeos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Sequência de Bases , Calorimetria , Domínio Catalítico , Sequência Conservada , Farmacorresistência Bacteriana , Metilação , Micromonospora/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Homologia de Sequência de Aminoácidos
3.
Aging Cell ; 16(2): 281-292, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995769

RESUMO

Multiple loss-of-function mutations in TRIAD3 (a.k.a. RNF216) have recently been identified in patients suffering from Gordon Holmes syndrome (GHS), characterized by cognitive decline, dementia, and movement disorders. TRIAD3A is an E3 ubiquitin ligase that recognizes and facilitates the ubiquitination of its target for degradation by the ubiquitin-proteasome system (UPS). Here, we demonstrate that two of these missense substitutions in TRIAD3 (R660C and R694C) could not regulate the degradation of their neuronal target, activity-regulated cytoskeletal-associated protein (Arc/Arg 3.1), whose expression is critical for synaptic plasticity and memory. The synaptic deficits due to the loss of endogenous TRIAD3A could not be rescued by TRIAD3A harboring GHS-associated missense mutations. Moreover, we demonstrate that the loss of endogenous TRIAD3A in the mouse hippocampal CA1 region led to deficits in spatial learning and memory. Finally, we show that these missense mutations abolished the interaction of TRIAD3A with Arc, disrupting Arc ubiquitination, and consequently Arc degradation. Our current findings of Arc misregulation by TRIAD3A variants suggest that loss-of-function mutations in TRIAD3A may contribute to dementia observed in patients with GHS driven by dysfunctional UPS components, leading to cognitive impairments through the synaptic protein Arc.


Assuntos
Ataxia Cerebelar/genética , Disfunção Cognitiva/patologia , Proteínas do Citoesqueleto/metabolismo , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Região CA1 Hipocampal/patologia , Clatrina/metabolismo , Disfunção Cognitiva/metabolismo , Endocitose , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/genética , Ligação Proteica , Proteólise , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Memória Espacial , Sinapses/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Sci Rep ; 6: 37061, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845431

RESUMO

Aminoglycosides are broad-spectrum antibiotics that bind to the 30S ribosomal subunit (30S) of bacteria and disrupt protein translation. NpmA, a structurally well-characterized methyltransferase identified in an E. coli clinical isolate, catalyzes methylation of 30S at A1408 of the 16S rRNA and confers aminoglycoside resistance. Using sucrose cushion centrifugation and isothermal titration calorimetry, we first confirmed the binding between NpmA and 30S. Next, we performed amide Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS) of apo NpmA and in the presence and absence of SAM/SAH. We observed that ligand binding resulted in time-dependent differences in deuterium exchange not only at the ligand-binding pocket (D25-D55 and A86-E112) but also in distal regions (F62-F82 and Y113-S144) of NpmA. These results provide insights into methylation group donor cofactor-mediated allostery in NpmA in the ligand-bound states, which could not be observed in the static endpoint crystal structures. We predict that the two distal sites in NpmA form part of the allosteric sites that importantly are part of the main 16S rRNA binding interface. Thus HDXMS helped uncover allosteric communication relays that couple SAM/SAH binding sites with the ribosome-binding site. This highlights how HDXMS together with X-ray crystallography can provide important allosteric insights in protein-ligand complexes.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Metiltransferases/química , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Sítios de Ligação , Medição da Troca de Deutério , Proteínas de Escherichia coli/metabolismo , Ligantes , Espectrometria de Massas , Metiltransferases/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
5.
Biol Psychiatry ; 80(4): 312-322, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386481

RESUMO

BACKGROUND: Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. METHODS: We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. RESULTS: A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. CONCLUSIONS: Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Exocitose/genética , Interneurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Linhagem Celular Transformada , Células Cultivadas , Córtex Cerebral/citologia , Disbindina , Proteínas Associadas à Distrofina/genética , Embrião de Mamíferos , Humanos , Interneurônios/efeitos dos fármacos , Mutação/genética , Técnicas de Cultura de Órgãos , Potássio/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Sinapses/genética , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA