Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(42): e2202987, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36073667

RESUMO

Liquid metals (LMs) play a growing role in flexible electronics and connected applications. Here, LMs come into direct contact with metal electrodes thus allowing for corrosion and additional alloying, potentially compromising device stability. Nevertheless, comprehensive studies on the interfacial interaction of the materials are still sparse. Therefore, a correlated material interaction study of capillary-printed Galinstan (eutetic alloy of Ga/In/Sn) with gold surfaces and electrodes is conducted. Comprehensive application of optical microscopy, vertical scanning interferometry, scanning electron microscopy/spectroscopy, x-ray photon spectroscopy, and atomic force microscopy allow for an in depth characterization of the spreading process of LM lines on gold films, revealing the differential spread of the different LM components and the formation of intermetallic nanostructures on the surface of the surrounding gold film. A model for the growth process based on the penetration of LM along the gold film grain boundaries is proposed based on the obtained time-dependent characterization. The distribution of gold, Galinstan, and intermetallic phases in a gold wire dipped into LM is observed using X-ray nano tomography as a complementary view on the internal nanostructure. Finally, resistance measurements on LM lines connecting gold electrodes over time allow to estimate the influence on the material interaction on electronic applications.

3.
Chem Asian J ; 17(11): e202200157, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362218

RESUMO

We have conceptualized and demonstrated an approach based on the combination of hydrophobicity, a substrate-independent dip coating as porous material with double residual chemical reactivities for implementing multiplexed, miniaturized and unclonable bulk-infused patterns of different fluorophores following distinct reaction pathways. The embedded hydrophobicity (∼102°) restricted the unwanted spreading of beaded aqueous ink on the coating. The constructions of micropatterns on porous dip-coating via ink-jet printing or microchannel cantilever spotting offered orthogonal read-out and remained readable even after removal of the exterior of the coating.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Porosidade
4.
Rev Sci Instrum ; 92(12): 125104, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972400

RESUMO

Microstructuring, in particular, the additive functionalization of surfaces with, e.g., conductive or bioactive materials plays a crucial role in many applications in sensing or printed electronics. Mostly, the lithography steps are made prior to assembling functionalized surfaces into the desired places of use within a bigger device as a microfluidic channel or an electronic casing. However, when this is not possible, most lithography techniques struggle with access to recessed or inclined/vertical surfaces for geometrical reasons. In particular, for "on-the-fly" printing aiming to add microstructures to already existing devices on demand and maybe even for one-time trials, e.g., in prototyping, a flexible "micropencil" allowing for direct write under direct manual control and on arbitrarily positioned surfaces would be highly desirable. Here, we present a highly flexible, micromanipulator-based setup for capillary printing of conductive and biomaterial ink formulations that can address a wide range of geometries as exemplified on vertical, recessed surfaces and stacked 3D scaffolds as models for hard to access surfaces. A wide range of feature sizes from tens to hundreds of micrometer can be obtained by the choice of capillary sizes and the on-demand in situ writing capabilities are demonstrated with completion of a circuit structure by gold line interconnects deposited with the setup.


Assuntos
Eletrônica , Impressão , Condutividade Elétrica
5.
Dalton Trans ; 45(18): 7697-707, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27054292

RESUMO

Three new Cu(ii) coordination polymers, namely, {[Cu3(L(1))(NO3)2(DMF)(H2O)]·3(DMF)}n (), [Cu3(L(1))(Cl)2(DMF)2]n () and [Cu3(L(2))(NO3)4(H2O)4]n (), were synthesized from pyridine-2,6-dicarbohydrazide based imine linked tritopic ligands. All the complexes were characterized using elemental analysis, IR, UV-vis spectroscopy and ESI-MS. The solid state structures of complexes were determined using single crystal X-ray crystallography. The complexes contain trinuclear copper units connected through different anions that lead to the formation of one dimensional (ID) chain structures. Depending upon the anion of the copper salt and donor atoms of the ligands used in complexation, a small variation in the structures was observed. In complex , the trinuclear copper units are connected by phenoxo-bridging (µ2-O(-)) along with one coordinated water molecule, whereas complex is connected through chloride bridging (µ2-Cl) and complex is connected through nitrate ions (µ-[O-N-O]) along with four water molecules. Photo-catalytic activities of the synthesized complexes () were investigated. All the complexes were found to be photo-catalytically active; however, the distinct coordination environment of the metal ions (i.e. difference in the coordinated water molecules and donor sites of ligands) played a significant role in the catalytic activities. Therefore, this study presents comparative photo-catalytic studies of different coordination environments of metal ions in one-dimensional Cu(ii) coordination polymers. The results provide a potential pathway for the rational design of more efficient photo-catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA