Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biol ; 27(21): 7745-57, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17724078

RESUMO

Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32(+), rad50(+), nbs1(+), rhp51(+), rad22(+), rhp55(+), rhp54(+), and mus81(+). Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Delta and rhp55Delta backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Delta rhp55Delta strains, were reduced in exo1Delta rhp55Delta and an rhp55Delta strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery.


Assuntos
Quebras de DNA de Cadeia Dupla , Perda de Heterozigosidade/genética , Recombinação Genética , Schizosaccharomyces/genética , Telômero/metabolismo , Translocação Genética , Alelos , Sequência de Bases , Cromossomos Fúngicos/metabolismo , Troca Genética , Reparo do DNA , Marcadores Genéticos , Modelos Genéticos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Mutação/genética , Filogenia , Rad51 Recombinase/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
EMBO J ; 22(6): 1419-30, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12628934

RESUMO

We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51(+), rad22A(+), rad32(+) and the nucleotide excision repair gene rad16(+) were required for efficient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3(+). Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Delta background involving ku70(+) and rhp51(+). Surprisingly, DSB-induced minichromosome loss was significantly reduced in ku70Delta and lig4Delta non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.


Assuntos
Dano ao DNA , Reparo do DNA/genética , DNA Fúngico/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Schizosaccharomyces/genética , Cromossomos Fúngicos , DNA Fúngico/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/genética , Raios gama , Conversão Gênica , Genes Fúngicos , Modelos Biológicos , Mutação , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA