RESUMO
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
RESUMO
We propose to sympathetically slow and cool polar molecules in a cold, low-density beam using laser-cooled Rydberg atoms. The elastic collision cross sections between molecules and Rydberg atoms are large enough to efficiently thermalize the molecules even in a low-density environment. Molecules traveling at 100 m/s can be stopped in under 30 collisions with little inelastic loss. Our method does not require photon scattering from the molecules and can be generically applied to complex species for applications in precision measurement, quantum information science, and controlled chemistry.
RESUMO
Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.
RESUMO
We propose a method to measure time-reversal symmetry violation in molecules that overcomes the standard quantum limit while leveraging decoherence-free subspaces to mitigate sensitivity to classical noise. The protocol does not require an external electric field, and the entangled states have no first-order sensitivity to static electromagnetic fields as they involve superpositions with zero average lab-frame projection of spins and dipoles. This protocol can be applied with trapped neutral or ionic species, and can be implemented using methods that have been demonstrated experimentally.
RESUMO
Molecules are a powerful platform to probe fundamental symmetry violations beyond the standard model, as they offer both large amplification factors and robustness against systematic errors. As experimental sensitivities improve, it is important to develop new methods to suppress sensitivity to external electromagnetic fields, as limits on the ability to control these fields are a major experimental concern. Here we show that sensitivity to both external magnetic and electric fields can be simultaneously suppressed using engineered radio frequency, microwave, or two-photon transitions that maintain large amplification of CP-violating effects. By performing a clock measurement on these transitions, CP-violating observables including the electron electric dipole moment, nuclear Schiff moment, and magnetic quadrupole moment can be measured with suppression of external field sensitivity of â³100 generically, and even more in many cases. Furthermore, the method is compatible with traditional Ramsey measurements, offers internal co-magnetometry, and is useful for systems with large angular momentum commonly present in molecular searches for nuclear CP violation.
RESUMO
A relativistic coupled-cluster study of the low-lying electronic states in the radium monohydroxide molecule (RaOH), a radioactive polyatomic molecule of interest to laser cooling and to the search of new physics beyond the Standard Model, is reported. The level positions of the A2Π1/2 and C2Σ states have been computed with an accuracy of around 200 cm-1 to facilitate spectroscopic observation of RaOH using laser induced fluorescence spectroscopy, thereby exploiting the systematic convergence of electron-correlation and basis-set effects in relativistic coupled-cluster calculations. The energy level for the B2Δ3/2 state has also been calculated accurately to conclude that the B2Δ3/2 state lies above the A2Π1/2 state. This confirms X2Σ â A2Π1/2 as a promising optical cycling transition for laser cooling RaOH.
RESUMO
A nonresonant cavity to build up laser intensity is modeled, developed, and tested. It can be used for overlapping multiple lasers of different wavelengths, increasing their intensities by more than an order of magnitude while maintaining good uniformity. It is simple to set up, has flexible optical characteristics, and is robust against perturbations. The intensity buildup requires no resonances, and the wavelength dependence of the performance is limited only by the mirror coatings. The cavity can be used, for example, in applications requiring a spatially constrained intensity buildup, such as in atomic and molecular traps.
RESUMO
Optical control of polyatomic molecules promises new opportunities in precision metrology and fundamental chemistry, as well as quantum information and many-body science. Contemporary experimental and theoretical efforts have mostly focused on cycling photons via excitation of a single electron localized to an alkaline earth (group 2)-like metal center. In this paper, we consider pathways towards optical cycling in polyatomic molecules with multi-electron degrees of freedom, which arise from two or more cycling electrons localized to p-block post-transition metal and metalloid (group 13, 14, and 15) centers. We characterize the electronic structure and rovibrational branching of several prototypical candidates using ab initio quantum chemical methods. Despite increased internal complexity and challenging design parameters, we find several molecules possessing quasi-closed photon cycling schemes with highly diagonal, visible and near-infrared transitions. Furthermore, we identify new heuristics for engineering optically controllable and laser-coolable polyatomic molecules with multi-electron cycling centers. Our results help elucidate the interplay between hybridization, repulsion, and ionicity in optically active species and provide new directions for using polyatomic molecules with complex electronic structure as a resource for quantum science and measurement.
RESUMO
We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application.
RESUMO
Precision measurements of Schiff moments in heavy, deformed nuclei are sensitive probes of beyond standard model T, P violation in the hadronic sector. While the most stringent limits on Schiff moments to date are set with diamagnetic atoms, polar polyatomic molecules can offer higher sensitivities with unique experimental advantages. In particular, symmetric top molecular ions possess K doublets of opposite parity with especially small splittings, leading to full polarization at low fields, internal comagnetometer states useful for rejection of systematic effects, and the ability to perform sensitive searches for T, P violation using a small number of trapped ions containing heavy exotic nuclei. We consider the symmetric top cation ^{225}RaOCH_{3}^{+} as a prototypical and candidate platform for performing sensitive nuclear Schiff measurements and characterize in detail its internal structure using relativistic ab initio methods. The combination of enhancements from a deformed nucleus, large polarizability, and unique molecular structure make this molecule a promising platform to search for fundamental symmetry violation even with a single trapped ion.
RESUMO
The odd isotopologues of ytterbium monohydroxide, 171,173YbOH, have been identified as promising molecules to measure parity (P) and time reversal (T) violating physics. Here, we characterize the Ã2Π1/2(0,0,0)-XÌ2Σ+(0,0,0) band near 577 nm for these odd isotopologues. Both laser-induced fluorescence excitation spectra of a supersonic molecular beam sample and absorption spectra of a cryogenic buffer-gas cooled sample were recorded. In addition, a novel spectroscopic technique based on laser-enhanced chemical reactions is demonstrated and used in absorption measurements. This technique is especially powerful for disentangling congested spectra. An effective Hamiltonian model is used to extract the fine and hyperfine parameters for the Ã2Π1/2(0,0,0) and XÌ2Σ+(0,0,0) states. A comparison of the determined XÌ2Σ+(0,0,0) hyperfine parameters with recently predicted values [Denis et al., J. Chem. Phys. 152, 084303 (2020); K. Gaul and R. Berger, Phys. Rev. A 101, 012508 (2020); and Liu et al., J. Chem. Phys. 154,064110 (2021)] is made. The measured hyperfine parameters provide experimental confirmation of the computational methods used to compute the P,T-violating coupling constants Wd and WM, which correlate P,T-violating physics to P,T-violating energy shifts in the molecule. The dependence of the fine and hyperfine parameters of the Ã2Π1/2(0,0,0) and XÌ2Σ+(0,0,0) states for all isotopologues of YbOH are discussed, and a comparison to isoelectronic YbF is made.
RESUMO
Nuclear magnetic quadrupole moments (MQMs), such as intrinsic electric dipole moments of elementary particles, violate both parity and time-reversal symmetry and, therefore, probe physics beyond the standard model. We report on accurate relativistic coupled cluster calculations of the nuclear MQM interaction constants in BaF, YbF, BaOH, and YbOH. We elaborate on estimates of the uncertainty of our results. The implications of experiments searching for nonzero nuclear MQMs are discussed.
RESUMO
Precision searches for time-reversal symmetry violating interactions in polar molecules are extremely sensitive probes of high energy physics beyond the standard model. To extend the reach of these probes into the PeV regime, long coherence times and large count rates are necessary. Recent advances in laser cooling of polar molecules offer one important tool-optical trapping. However, the types of molecules that have been laser cooled so far do not have the highly desirable combination of features for new physics searches, such as the ability to fully polarize and the existence of internal comagnetometer states. We show that by utilizing the internal degrees of freedom present only in molecules with at least three atoms, these features can be attained simultaneously with molecules that have simple structure and are amenable to laser cooling and trapping.
RESUMO
We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6} cm^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20) µK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.
RESUMO
A study of the intensity-borrowing mechanisms important to optical cycling transitions in laser-coolable polyatomic molecules arising from non-adiabatic coupling, contributions beyond the Franck-Condon approximation, and Fermi resonances is reported. It has been shown to be necessary to include non-adiabatic coupling to obtain computational accuracy that is sufficient to be useful for laser cooling of molecules. The predicted vibronic branching ratios using perturbation theory based on the non-adiabatic mechanisms have been demonstrated to agree well with those obtained from variational discrete variable representation calculations for representative molecules including CaOH, SrOH, and YbOH. The electron-correlation and basis-set effects on the calculated transition properties, including the vibronic coupling constants, the spin-orbit coupling matrix elements, and the transition dipole moments, and on the calculated branching ratios have been thoroughly studied. The vibronic branching ratios predicted using the present methodologies demonstrate that RaOH is a promising radioactive molecule candidate for laser cooling.
RESUMO
Ultracold polyatomic molecules are promising candidates for experiments in quantum science and precision searches for physics beyond the Standard Model. A key requirement is the ability to achieve full quantum control over the internal structure of the molecules. In this work, we established coherent control of individual quantum states in calcium monohydroxide (CaOH) and demonstrated a method for searching for the electron electric dipole moment (eEDM). Optically trapped, ultracold CaOH molecules were prepared in a single quantum state, polarized in an electric field, and coherently transferred into an eEDM-sensitive state where an electron spin precession measurement was performed. To extend the coherence time, we used eEDM-sensitive states with tunable, near-zero magnetic field sensitivity. Our results establish a path for eEDM searches with trapped polyatomic molecules.
RESUMO
Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of â¼10(15)-10(16) cm(-3) (Reynolds number â¼1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver â¼10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.
RESUMO
We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.