Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6011, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019847

RESUMO

Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.


Assuntos
Florestas , Herbivoria , Insetos , Nitrogênio , Folhas de Planta , Temperatura , Herbivoria/fisiologia , Animais , Insetos/fisiologia , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Fósforo/metabolismo , Ecossistema , Árvores/metabolismo
2.
Ecol Evol ; 12(9): e9322, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188494

RESUMO

Insect herbivores play important roles in shaping many ecosystem processes, but how climate change will alter the effects of insect herbivory are poorly understood. To address this knowledge gap, we quantified for the first time how insect frass and cadavers affected leaf litter decomposition rates and nutrient release along a highly constrained 4.3°C mean annual temperature (MAT) gradient in a Hawaiian montane tropical wet forest. We constructed litterbags of standardized locally sourced leaf litter, with some amended with insect frass + cadavers to produce treatments designed to simulate ambient (Control = no amendment), moderate (Amended-Low = 2 × Control level), or severe (Amended-High = 11 × Control level) insect outbreak events. Multiple sets of these litterbags were deployed across the MAT gradient, with individual litterbags collected periodically over one year to assess how rising MAT altered the effects of insect deposits on litter decomposition rates and nitrogen (N) release. Increased MAT and insect inputs additively increased litter decomposition rates and N immobilization rates, with effects being stronger for Amended-High litterbags. However, the apparent temperature sensitivity (Q 10) of litter decomposition was not clearly affected by amendments. The effects of adding insect deposits in this study operated differently than the slower litter decomposition and greater N mobilization rates often observed in experiments which use chemical fertilizers (e.g., urea, ammonium nitrate). Further research is required to understand mechanistic differences between amendment types. Potential increases in outbreak-related herbivore deposits coupled with climate warming will accelerate litter decomposition and nutrient cycling rates with short-term consequences for nutrient cycling and carbon storage in tropical montane wet forests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA