Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Pineal Res ; 62(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28095641

RESUMO

Alcoholic liver disease is a major cause of chronic liver disease worldwide, and cannabinoid receptor type 1 (CB1R) is involved in a diverse metabolic diseases. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are a potent regulator of biological conditions. Melatonin plays a crucial role in regulating diverse physiological functions and metabolic homeostasis. MicroRNAs are key regulators of various biological processes. Herein, we demonstrate that melatonin improves bile acid synthesis in the liver of alcohol-fed mice by controlling miR-497 expression. The level of bile acid and the expression of Cb1r, Btg2, Yy1, and bile acid synthetic enzymes were significantly elevated in the livers of Lieber-DeCarli alcohol-fed mice. The overexpression of Btg2 enhanced Yy1 gene expression and bile acid production, whereas disrupting the CB1R-BTG2-YY1 cascade protected against the bile acid synthesis caused by alcohol challenge. We identified an alcohol-mediated YY1 binding site on the cholesterol 7α-hydroxylase (Cyp7a1) gene promoter using promoter deletion analysis and chromatin immunoprecipitation assays. Notably, melatonin attenuated the alcohol-stimulated induction of Btg2, Yy1 mRNA levels and bile acid production by promoting miR-497. Overexpression of a miR-497 mimic dramatically diminished the increase of Btg2 and Yy1 gene expression as well as bile acid production by alcohol, whereas this phenomenon was reversed by miR-497 inhibitor. These results demonstrate that the upregulation of miR-497 by melatonin represses alcohol-induced bile acid synthesis by attenuating the BTG2-YY1 signaling pathway. The melatonin-miR497 signaling network may provide novel therapeutic targets for the treatment of hepatic metabolic dysfunction caused by the alcohol-dependent pathway.


Assuntos
Antioxidantes/farmacologia , Ácidos e Sais Biliares/biossíntese , Hepatopatias Alcoólicas/metabolismo , Melatonina/farmacologia , MicroRNAs/biossíntese , Animais , Western Blotting , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição YY1/metabolismo
2.
Biochim Biophys Acta ; 1852(12): 2662-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410577

RESUMO

Alcohol consumption exacerbates alcoholic liver disease by attenuating the activity of AMP-activated protein kinase (AMPK). AMPK is activated by fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, and inhibited by direct interaction with cereblon (CRBN), a component of an E3 ubiquitin ligase complex. Based on these preliminary findings, we investigated that CRBN would be up-regulated in the liver by alcohol consumption and that CRBN deficiency would ameliorate hepatic steatosis and pro-inflammatory responses in alcohol-fed mice by increasing AMPK activity. Wild-type, CRBN and PPARα null mice were fed an alcohol-containing liquid diet and administered with fenofibrate. Gene expression profiles and metabolic changes were measured in the liver and blood of these mice. Expression of CRBN, cytochrome P450 2E1 (CYP2E1), lipogenic genes, pro-inflammatory cytokines, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were increased in the Lieber-DeCarli alcohol-challenged mice. Fenofibrate attenuated the induction of CRBN and reduced hepatic steatosis and pro-inflammatory markers in these mice. Ablation of the gene encoding CRBN produced the same effect as fenofibrate. The increase in CRBN gene expression by alcohol and the reduction of CRBN expression by fenofibrate were negated in PPARα null mice. Fenofibrate increased the recruitment of PPARα on CRBN gene promoter in WT mice but not in PPARα null mice. Silencing of AMPK prevented the beneficial effects of fenofibrate. These results demonstrate that activation of PPARα by fenofibrate alleviates alcohol-induced hepatic steatosis and inflammation by reducing the inhibition of AMPK by CRBN. CRBN is a potential therapeutic target for the alcoholic liver disease.

3.
Biochem Biophys Res Commun ; 460(4): 996-1001, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839654

RESUMO

Hepcidin is a peptide hormone secreted in the liver and plays a key role in maintaining iron homeostasis. Here, we demonstrate that B-cell translocation gene 2 (BTG2) is a key player in hepatic hepcidin regulation via induction of Yin Yang 1 (YY1). Hepatic hepcidin gene expression significantly enhanced by fasting states and glucagon exposure led to induction of gluconeogenic gene expression, and elevated serum hepcidin production in mice. Notably, overexpression of BTG2 using adenoviral system (Ad-BTG2) significantly elevated serum hepcidin levels via a significant induction of YY1 gene transcription. Immunoprecipitation studies demonstrated that BTG2 physically interacted with YY1 and recruited on the hepcidin gene promoter. Finally, ablation of hepatic BTG2 gene by gene silencing markedly attenuated the elevation of serum hepcidin production along with YY1 and hepcidin mRNA expression in fasting state. Likewise, forskolin (FSK)-stimulated hepcidin promoter activity was dramatically disrupted by endogenous BTG2 knockdown. Overall, our current study provides a novel molecular mechanism of BTG2-mediated induction of hepcidin gene expression, thereby contributing to a better understanding of the hepatic hepcidin production involved in iron homeostasis.


Assuntos
Hepcidinas/biossíntese , Proteínas Imediatamente Precoces/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fator de Transcrição YY1/biossíntese , Animais , Sequência de Bases , Linhagem Celular Transformada , Primers do DNA , Gluconeogênese , Hepcidinas/genética , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética
4.
J Allergy Clin Immunol ; 134(3): 714-721.e7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24948367

RESUMO

BACKGROUND: Extracellular signal-regulated kinases 1/2 (ERK1/2) make important contributions to allergic responses via their regulation of degranulation, eicosanoid production, and cytokine expression by mast cells, yet the mechanisms underlying their positive effects on FcεRI-dependent signaling are not fully understood. Recently, we reported that mast cell activation and anaphylaxis are negatively regulated by AMP-activated protein kinase (AMPK). However, little is known about the relationship between ERK1/2-mediated positive and the AMPK-mediated negative regulation of FcεRI signaling in mast cells. OBJECTIVE: We investigated possible interactions between ERK1/2 and AMPK in the modulation of mast cell signaling and anaphylaxis. METHODS: Wild-type or AMPKα2(-/-) mice, or bone marrow-derived mast cells obtained from these mice, were treated with either chemical agents or small interfering RNAs that modulated the activity or expression of ERK1/2 or AMPK to evaluate the functional interplay between ERK1/2 and AMPK in FcεRI-dependent signaling. RESULTS: The ERK1/2 pathway inhibitor U0126 and the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside similarly inhibited FcεRI-mediated mast cell signals in vitro and anaphylaxis in vivo. ERK1/2-specific small interfering RNA also mimicked this effect on FcεRI signals. Moreover, AMPKα2 knockdown or deficiency led to increased FcεRI-mediated mast cell activation and anaphylaxis that were insensitive to U0126 or activator 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside, suggesting that the suppression of FcεRI signals by the inhibition of the ERK1/2 pathway relies largely on AMPK activation. ERK1/2 controlled AMPK activity by regulating its subcellular translocation. CONCLUSIONS: ERK1/2 ablated the AMPK-dependent negative regulatory axis, thereby activating FcεRI signals in mast cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anafilaxia/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipersensibilidade/imunologia , Mastócitos/imunologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Anafilaxia/etiologia , Animais , Butadienos/farmacologia , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Hipersensibilidade/complicações , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrilas/farmacologia , Receptores de IgG/metabolismo , Ribonucleosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
J Allergy Clin Immunol ; 132(3): 729-736.e12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23587332

RESUMO

BACKGROUND: Aggregation of FcεRI activates a cascade of signaling events leading to mast cell activation, followed by inhibitory signals that turn off the activating signals. However, the overall view of negative signals in mast cells is still incomplete. Although AMP-activated protein kinase (AMPK), which is generally known as a regulator of energy metabolism, is also associated with anti-inflammation, little is known about the role of AMPK in mast cells. OBJECTIVES: We investigated the role of AMPK and its regulatory mechanism in mast cells. METHOD: The roles of AMPK in FcεRI-dependent activation of bone marrow-derived mast cells (BMMCs) were evaluated by using chemical agents, small interfering RNAs (siRNAs), or adenovirus that modulated the activity or expression of AMPK signaling components. In addition, AMPKα2(-/-) mice were used to verify the role of AMPK in anaphylactic models. RESULTS: FcεRI signaling and associated effector functions in BMMCs were suppressed by the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside (AICAR) and were conversely augmented by siRNA knockdown of AMPKα2 or liver kinase B1 (LKB1), an upstream kinase of AMPK. Furthermore, AMPKα2 deficiency led to increased FcεRI-mediated BMMC activation and anaphylaxis that were insensitive to AICAR, whereas enforced expression of AMPKα2 in AMPKα2(-/-) BMMCs reversed the hypersensitive FcεRI signaling to normal levels. Pharmacologic inhibition or siRNA knockdown of Fyn mimicked AMPK activation, suggesting that Fyn counterregulates the LKB1-AMPK axis. Mechanistically, Fyn controlled AMPK activity by regulating LKB1 localization. CONCLUSIONS: The Fyn-regulated LKB1-AMPK axis acts as a novel inhibitory module for mast cell activation, which points to AMPK activators as therapeutic drugs for allergic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Anafilaxia/imunologia , Mastócitos/imunologia , Receptores de IgE/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia
6.
Mol Pharmacol ; 84(1): 147-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658008

RESUMO

Low molecular weight fucoidan (LMWF) is widely used to treat metabolic disorders, but its physiologic effects have not been well determined. In the present study, we investigated the metabolic effects of LMWF in obese diabetic mice (leptin receptor-deficient db/db mice) and the underlying molecular mechanisms involved in endoplasmic reticulum (ER) stress-responsive L6 myotubes. The effect of LMWF-mediated AMP-activated protein kinase (AMPK) activation on insulin resistance via regulation of the ER stress-dependent pathway was examined in vitro and in vivo. In db/db mice, LMWF markedly reduced serum glucose, triglyceride, cholesterol, and low-density lipoprotein levels, and gradually reduced body weights by reducing lipid parameters. Furthermore, it effectively ameliorated glucose homeostasis by elevating glucose tolerance. In addition, the phosphorylation levels of AMPK and Akt were markedly reduced by ER stressor, and subsequently, glucose uptake and fatty acid oxidation were also reduced. However, these adverse effects of ER stress were significantly ameliorated by LMWF. Finally, in L6 myotubes, LMWF markedly reduced the ER stress-induced upregulation of the mammalian target of rapamycin-p70S61 kinase network and subsequently improved the action of insulin via AMPK stimulation. Our findings suggest that AMPK activation by LMWF could prevent metabolic diseases by controlling the ER stress-dependent pathway and that this beneficial effect of LMWF provides a potential therapeutic strategy for ameliorating ER stress-mediated metabolic dysfunctions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Polissacarídeos/farmacologia , Animais , Peso Corporal , Colesterol/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Lipídeos , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Peso Molecular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/sangue
7.
J Biol Chem ; 287(44): 37098-108, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22977252

RESUMO

Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance.


Assuntos
Gluconeogênese/genética , Hepatócitos/metabolismo , Hormônio do Crescimento Humano/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Fator de Transcrição STAT5/metabolismo , Ativação Transcricional , Adenilato Quinase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Ativadores de Enzimas/farmacologia , Genes Reporter , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Fígado/metabolismo , Metformina/farmacologia , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Fator de Transcrição STAT5/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
8.
Biochem Biophys Res Commun ; 437(3): 374-9, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23831466

RESUMO

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in the maintenance of cellular energy homeostasis, and several natural compounds that activate AMPK possibly enhance glucose uptake by muscle cells. In this study, we found that pinusolide stimulated AMPK phosphorylation and glucose uptake and these effects were significantly reduced by siRNA LKB1 or compound C, suggesting that enhanced glucose uptake by pinusolide is predominantly accomplished via an LKB1-mediated AMPK activation pathway. An insulin resistance state was induced by exposing cells to 30mM glucose, as indicated by reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake. Under these conditions, the phosphorylation of AMPK and ACC were decreased. Surprisingly, disrupted insulin signaling and decreased AMPK activity by high glucose concentrations were prevented by pinusolide. Moreover, this treatment increased insulin-stimulated glucose uptake via AMPK activation. Taken together, our findings suggest a link between high glucose and insulin resistance in muscle cells, and provide further evidence that pinusolide attenuates blockade of insulin signaling by enhancing IRS-1 tyrosine phosphorylation by the activating the AMPK pathway. In addition, this study indicates the targeting of AMPK represents a new therapeutic strategy for hyperglycemia-induced insulin resistance and type 2 diabetes.


Assuntos
Desoxiglucose/fisiologia , Diterpenos/administração & dosagem , Resistência à Insulina/fisiologia , Thuja , Quinases Proteína-Quinases Ativadas por AMP , Animais , Células Cultivadas , Desoxiglucose/antagonistas & inibidores , Ativação Enzimática/fisiologia , Humanos , Hipoglicemiantes/administração & dosagem , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/metabolismo , Medicina Tradicional Coreana , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Proteínas Serina-Treonina Quinases , Ratos , Transdução de Sinais/fisiologia
9.
Biochem Biophys Res Commun ; 430(4): 1246-52, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23266607

RESUMO

The aim of the present study was to determine the effect of Tanshinone IIA (Tan IIA) on endoplasmic reticulum (ER) stress-induced insulin resistance in L6 myotubes and db/db mice. ER stress markers, RNA-activated protein kinase-like ER resident kinase (PERK), JNK, and AMPK activity were determined in tunicamycin-treated L6 myotubes. Insulin resistance was monitored using glucose uptake assays in vitro and blood glucose levels in vivo. Tan IIA clearly suppressed the phosphorylations of PERK and JNK and potentiated insulin-mediated Akt phosphorylation as well as glucose uptake via AMPK activation under ER stress. Furthermore, these effects are completely abrogated by siRNA-mediated knockdown of AMPK or LKB1. In addition, Tan IIA reduced blood glucose levels and body weights in db/db mice without altering food intake. These findings suggest that Tan IIA enhances insulin sensitivity and improves glucose metabolic disorders by increasing AMPK activity and attenuating ER stress-induced insulin resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Tunicamicina/farmacologia
10.
Biol Pharm Bull ; 36(8): 1370-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23719635

RESUMO

The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Furanos/farmacologia , Mastócitos/efeitos dos fármacos , Prostaglandina D2/antagonistas & inibidores , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Furanos/isolamento & purificação , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fitoterapia , Raízes de Plantas/química , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Saururaceae
11.
Biochem Biophys Res Commun ; 418(2): 402-7, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22281494

RESUMO

This study was designed to evaluate the role of mammalian target of rapamycin (mTOR)/p70S61 kinase (S6K1) pathways in ER stress-induced insulin resistance in L6 myotubes. Pretreatment with 5µg/ml of tunicamycin or 600nM thapsigargin for 3h decreased insulin-mediated tyrosine phosphorylation of IRS-1 and glucose uptake, and increased the level of mTOR/S6K1 phosphorylation in L6 myotubes. However, the inhibition of mTOR activity by rapamycin (inhibitor of several intracellular pathways including S6K1 pathways) reversed the ER stress-reduced tyrosine phosphorylation of IRS-1 and glucose uptake. Furthermore, pretreatment of cells with rapamycin decreased ER stress-induced phosphorylation of mTOR and S6K1. Interestingly, inhibition of mTOR by rapamycin did not affect ER stress markers such as PERK and JNK activity under the ER stress condition. Similar results were obtained with or without pretreatment with tunicamycin in the absence or presence of S6K1 RNAi. Moreover, S6K1 RNAi-mediated knockdown preserved insulin-stimulated Akt phosphorylation and glucose uptake in ER-stressed L6 myotubes, which was blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Taken together, these results suggest that rapamycin improved ER stress-induced insulin resistance via inhibition of mTOR/S6K1 hyperphosphorylation in L6 myotubes.


Assuntos
Resistência à Insulina , Insulina/farmacologia , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Quinases S6 Ribossômicas/genética , Tirosina/metabolismo
12.
Biochem Biophys Res Commun ; 427(4): 801-5, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23058912

RESUMO

Hepatic gluconeogenesis is mediated by the network of transcriptional factors and cofactors. Here, we show that B-cell translocation gene-2 (BTG2) plays a crucial cofactor in hepatic gluconeogenesis via upregulation of the cyclic AMP (cAMP) response element binding (CREB) in hepatocytes. cAMP/dexamethasone (Dex) significantly increased BTG2 and other gluconeogenic genes such as Nur77, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase) in hepatocytes. In contrast, insulin treatment completely blocks their expressions. Interestingly, overexpression of BTG2 using adenoviral system (Ad-BTG2) significantly elevated hepatic glucose production via the increase of transcriptional activity and gene expression of CREB, PEPCK, and G6Pase in hepatocytes, suggesting that BTG2 is the key player on hepatic glucose production. Physiological interaction studies demonstrated that BTG2 correlated CREB recruitment on the PEPCK gene promoter via a direct interaction. Finally, knockdown of endogenous BTG2 expression markedly inhibits the cAMP/Dex-induced transcriptional activity of gluconeogenic genes and glucose production in hepatocytes. Overall, the present study provides us with a novel molecular mechanism of BTG2-mediated induction of hepatic gluconeogenesis and suggests that BTG2 plays an important role in hepatic glucose metabolism.


Assuntos
Regulação da Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Fígado/metabolismo , Elementos de Resposta/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Dexametasona/farmacologia , Glucagon/metabolismo , Glucagon/farmacologia , Células Hep G2 , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Ratos , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
13.
Mol Cell Biochem ; 360(1-2): 401-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948260

RESUMO

The aim of this study was to elucidate the effects of natural vanadium-containing Jeju ground water on glucose uptake in L6 myotubes and adipogensesis in 3T3 L1 cells. The Jeju ground water samples containing vanadium components were designated as S1 (8.0 ± 0.9 µg/l), S2 (24.0 ± 2.0 µg/l), and S3 (26.0 ± 2.0 µg/l), respectively. To investigate the effects of the Jeju ground water on glucose uptake in L6 myotubes, L6 cells were differentiated in media containing deionized distilled water (DDW group) and the water samples (S1, S2, and S3 groups). After daily changes in cultured media containing the Jeju ground water samples for 1 week, all samples had increased glucose uptake compared to the DDW group and the order of glucose uptake increased in parallel with vanadium content (S3 > S2 > S1). In addition, S3 significantly stimulated the phosphorylation of the Thr-172 residue of the AMP-activated protein kinase-α subunit and the Ser-79 subunit of acetyl-CoA carboxylase compared to the DDW group. The effect of glucose uptake by S3 was reversed by pretreatment with Compound C, an AMPK inhibitor. Interestingly, vanadium pentoxide also increased glucose uptake and activated AMPK activity in a dose-dependent manner. Furthermore, as compared to the DDW treated group, S3 treatment inhibited adipogenesis of 3T3-L1 cells by down regulation of expressions of adipogenic transcription factors. Taken together, these findings suggest that S3 displays beneficial effects in the treatment of diabetes, at least in part through the activation of AMPK activity.


Assuntos
Ativação Enzimática , Glucose/metabolismo , Água Subterrânea/química , Hipoglicemiantes/farmacologia , Vanádio/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP , Adenilato Quinase , Adipogenia/efeitos dos fármacos , Animais , Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Insulina/farmacologia , Camundongos , Naftalimidas/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Compostos de Vanádio/farmacologia
14.
Biol Pharm Bull ; 35(2): 216-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22293352

RESUMO

The high-affinity receptor for immunoglobulin E (IgE) (FcεRI)-mediated activation of mast cells plays an important role in various allergic diseases. To assess the anti-allergic activity of natural vanadium-containing Jeju groundwater (JW), an in vivo passive cutaneous anaphylaxis (PCA) animal model and in vitro mouse bone marrow-derived mast cells (BMMCs) was used. JW inhibited cyclooxygenase-2 (COX-2)-dependent prostaglandin D(2) (PGD(2)) generation in a dose-dependent manner, with a concomitant reduction of COX-2 protein expression in IgE-induced BMMCs. In addition, JW inhibited 5-lipoxygenase (5-LOX)-dependent generation of leukotriene C(4) (LTC(4)) as well as degranulation in a dose-dependent manner. These results demonstrate that JW has dual COX-2/5-LOX inhibitory activity. In addition, vanadium pentoxide (V(2)O(5)), which is the major vanadium component of JW, also inhibited PGD(2) and LTC(4) generation as well as degranulation in IgE-induced BMMCs. Furthermore, oral administration of JW dose-dependently inhibited mast cell-dependent passive anaphylactic reaction in IgE-sensitized mice. Taken together, these results suggest that JW may be useful in regulating mast cell-mediated allergic response through the suppression of eicosanoid generation and degranulation in mast cells.


Assuntos
Antialérgicos/farmacologia , Água Subterrânea , Mastócitos/efeitos dos fármacos , Vanádio/farmacologia , Poluentes Químicos da Água/farmacologia , Anafilaxia/tratamento farmacológico , Anafilaxia/imunologia , Animais , Células da Medula Óssea/citologia , Cálcio/imunologia , Degranulação Celular/efeitos dos fármacos , Imunoglobulina E/imunologia , Leucotrieno C4/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Prostaglandina D2/imunologia
15.
Biotechnol Lett ; 34(9): 1607-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22576281

RESUMO

Gynostemma pentaphyllum is widely used in Asian countries as a herbal medicine to treat dyslipidemia, type 2 diabetes and inflammation. An ethanol extract of G. pentaphyllum lessened obesity by activating AMP-activated protein kinase (AMPK). The levels of damulins A and B, components responsible for AMPK activation in the extract, were increased by autoclaving in a time-dependent manner. Heat-processed G. pentaphyllum extract, actiponin containing damulins A (0.93 %, w/w) and B (0.68 %, w/w), significantly stimulated fat oxidation and glucose uptake via AMPK activation in L6 myotube cells. Oral administration of actiponin to ob/ob mice for 8 weeks decreased body weight gain, liver weight, and blood cholesterol levels with AMPK activation in the soleus muscle. Our results demonstrate the beneficial effect of G. pentaphyllum on improving obesity and have elucidated the underlying molecular mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/uso terapêutico , Gynostemma/química , Temperatura Alta , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Ativadores de Enzimas/administração & dosagem , Ativadores de Enzimas/isolamento & purificação , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Oxirredução , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fatores de Tempo
16.
Biochem Biophys Res Commun ; 406(3): 353-8, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329651

RESUMO

Chemopreventive or anticancer agents induce cancer cells to apoptosis through the activation of adenosine AMP-activated protein kinase (AMPK), which plays a major role as energy sensors under ATP-deprived condition or ROS generation. In this study, we compared the effects of ascochlorin (ASC), from the fungus Ascochyta viciae, and its derivatives on AMPK activity. We also examined a regulatory mechanism for hypoxia-inducible factor-1α (HIF-1α) stabilization in response to 4-O-methylascochlorin (MAC). We found that AMPK activation was mainly involved with MAC, but not ASC and 4-O-carboxymethylascochlorin (AS-6), indicating that the substitution of 4-O-methyl group from 4-O-hydroxyl group of ASC is important in the activation of AMPK and the expression of HIF-1α. MAC-stabilized HIF-1α via AMPK activation triggered by lowering the intracellular ATP level, not by ROS generation, increases glucose uptake and the expression of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT-1), major target genes of HIF-1α. Moreover, MAC-induced AMPK activity suppressed survival factors, including mTOR and ERK1/2 or translational regulators, including p70S6K and 4E-BP1. Our data suggest that AMPK is a key determinant of MAC-induced HIF-1α expression in response to energy stress, further implying its involvement in MAC-induced apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alcenos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fenóis/farmacologia , Terpenos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/metabolismo , Alcenos/química , Apoptose , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Metilação , Fenóis/química , Regiões Promotoras Genéticas/efeitos dos fármacos , Estabilidade Proteica , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Bioorg Med Chem ; 19(21): 6254-60, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21978948

RESUMO

AMP-activated protein kinase (AMPK) is a key sensor and regulator of glucose, lipid, and energy metabolism throughout the body. Activation of AMPK improves metabolic abnormalities associated with metabolic diseases including obesity and type-2 diabetes. The oriental traditional medicinal herbal plant, Gynostemma pentaphyllum, has shown a wide range of beneficial effects on glucose and lipid metabolism. In this study, we found that G. pentaphyllum contains two novel dammarane-type saponins designated as damulin A (1), 2α,3ß,12ß-trihydroxydammar-20(22)-E,24-diene-3-O-[ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside], and damulin B (2), 2α,3ß,12ß-trihydroxydammar-20,24-diene-3-O-[ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside], that strongly activate AMPK in cultured L6 myotube cells. Damulins A and B also increased ß-oxidation and glucose uptake with increasing GluT4 translocation to the plasma membrane in L6 myotube cells. Taken together our results indicate that activation of AMPK by damulins A and B may contribute to beneficial effect of G. pentaphyllum on glucose and lipid metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gynostemma/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Saponinas/isolamento & purificação , Saponinas/farmacologia , Animais , Western Blotting , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , RNA Interferente Pequeno/farmacologia , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Damaranos
18.
Biochem Biophys Res Commun ; 396(4): 967-72, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20460103

RESUMO

The current study presents that ascofuranone isolated from a phytopathogenic fungus, Ascochyta viciae, has antitumor activity against various transplantable tumors and a considerable hypolipidemic activity. AMP-activated protein kinase (AMPK) plays a critical role in cellular glucose and lipid homeostasis. We found that ascofuranone improves ER stress-induced insulin resistance by activating AMPK through the LKB1 pathway. In L6 myotube cells, ascofuranone treatment increased the phosphorylation of the Thr-172 residue of the AMPK alpha subunit and the Ser-79 subunit of acetyl-CoA carboxylase (ACC) and cellular glucose uptake. Ascofuranone-induced phosphorylation of AMPK and ACC was not increased in A549 cells lacking LKB1. Interestingly, ascofuranone treatment also improved insulin signaling impaired by ER stress in L6 myotube cells. These effects were all reversed by pretreatment with Compound C, an AMPK inhibitor or with adenoviral-mediated dominant-negative AMPK alpha 2. Taken together, these results indicated that ascofuranone-mediated enhancement of glucose uptake and reduction of impaired insulin sensitivity in L6 cells is predominantly accomplished by activating AMPK, thereby mediating beneficial effects in type 2 diabetes and insulin resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/biossíntese , Antifúngicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Antagonistas da Insulina/farmacologia , Resistência à Insulina , Sesquiterpenos/farmacologia , Estresse Fisiológico , Animais , Linhagem Celular , Retículo Endoplasmático/enzimologia , Ativação Enzimática , Glucose/metabolismo , Humanos , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Ratos
19.
Sci Rep ; 10(1): 2827, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054962

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 9(1): 3730, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842568

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone that is vital for the regulation of metabolic homeostasis. In the present study, we report that Kruppel-like factor 15 (KLF15) is a novel mediator of b-cell translocation gene 2 (BTG2)-induced FGF21 biosynthesis. The expression levels of hepatic Fgf21, Btg2, and Klf15, and the production of serum FGF21 increased significantly in fasted and forskolin (FSK)-treated mice. The overexpression of Btg2 using an adenoviral delivery system elevated FGF21 production by upregulating Klf15 transcription. Interaction studies indicated that BTG2 was co-immunoprecipitated with KLF15 and recruited by the Fgf21 promoter. The disruption of hepatic Btg2 and Klf15 genes markedly attenuated the induction of Fgf21 expression and FGF21 biosynthesis in fasted mice. Similarly, the FSK-mediated induction of Fgf21 promoter activity was strikingly ablated by silencing of Btg2 and Klf15. Taken together, these findings suggest that KLF15 and BTG2 are mediators of fasting-induced hepatic FGF21 expression. Therefore, targeting BTG2 and KLF15 might be a therapeutically important strategy for combat metabolic dysfunction.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição Kruppel-Like/genética , Fígado/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular , Colforsina/farmacologia , Jejum/sangue , Fatores de Crescimento de Fibroblastos/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA