Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes Dev ; 30(16): 1881-94, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585592

RESUMO

Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI-CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4-Not deadenylase complex, respectively-suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.


Assuntos
Adaptação Fisiológica/genética , Aneuploidia , Endopeptidases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromossomos Fúngicos/genética , Endopeptidases/metabolismo , Deleção de Genes , Dosagem de Genes/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(51): 25790-25799, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792183

RESUMO

Regulatory T (Treg) cells play an essential role in maintaining immune homeostasis, but the suppressive function of Treg cells can be an obstacle in the treatment of cancer and chronic infectious diseases. Here, we identified the homeobox protein Hhex as a negative regulator of Treg cells. The expression of Hhex was lower in Treg cells than in conventional T (Tconv) cells. Hhex expression was repressed in Treg cells by TGF-ß/Smad3 signaling. Retroviral overexpression of Hhex inhibited the differentiation of induced Treg (iTreg) cells and the stability of thymic Treg (tTreg) cells by significantly reducing Foxp3 expression. Moreover, Hhex-overexpressing Treg cells lost their immunosuppressive activity and failed to prevent colitis in a mouse model of inflammatory bowel disease (IBD). Hhex expression was increased; however, Foxp3 expression was decreased in Treg cells in a delayed-type hypersensitivity (DTH) reaction, a type I immune reaction. Hhex directly bound to the promoters of Foxp3 and other Treg signature genes, including Il2ra and Ctla4, and repressed their transactivation. The homeodomain and N-terminal repression domain of Hhex were critical for inhibiting Foxp3 and other Treg signature genes. Thus, Hhex plays an essential role in inhibiting Treg cell differentiation and function via inhibition of Foxp3.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígeno CTLA-4/metabolismo , Diferenciação Celular , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Transdução de Sinais , Pele/patologia , Proteína Smad3/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
3.
J Cell Mol Med ; 21(1): 35-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27605340

RESUMO

D-dopachrome tautomerase (D-DT/MIF-2) is a member of the macrophage migration inhibitory factor (MIF) cytokine superfamily, and a close structural homolog of MIF. MIF and D-DT have been reported to be involved in obesity, but there is little known about the regulation of D-DT in adipose tissue inflammation and wound healing. Subcutaneous adipose tissue was collected from 54 healthy donors and 28 donors with acutely inflamed wounds undergoing wound debridement. In addition, epididymal fat pads of mice were injected with lipopolysaccharide to study receptor expression and cell migration in vivo. D-DT protein levels and mRNA expression were significantly decreased in subcutaneous adipose tissue adjacent to acutely inflamed wounds. D-DT improved fibroblast viability and increased proliferation in vitro. While D-DT alone did not have a significant effect on in vitro fibroblast wound healing, simultaneous addition of neutralizing MIF antibody resulted in a significant improvement of fibroblast wound healing. Interestingly, expression of the MIF and D-DT receptor CD74 was down-regulated while the MIF receptors CXCR2 and CXCR4 were up-regulated primarily on macrophages indicating that the MIF-CXCR2/4 axis may promote recruitment of inflammatory cells into adipose tissue. Our results describe a reciprocal role of D-DT to MIF in inflamed adipose tissue, and indicate that D-DT may be beneficial in wound repair by improving fibroblast survival and proliferation.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Cicatrização/fisiologia , Tecido Adiposo/patologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/metabolismo , Regulação para Cima/fisiologia
4.
Biochim Biophys Acta ; 1859(6): 825-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27126747

RESUMO

The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.


Assuntos
Linfócitos T CD4-Positivos/citologia , Cromatina/metabolismo , Regulação da Expressão Gênica , Fator 1 de Transcrição de Octâmero/genética , Subpopulações de Linfócitos T/citologia , Fator de Ligação a CCCTC , Linfócitos T CD4-Positivos/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Diferenciação Celular , Linhagem da Célula/imunologia , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Citocinas/genética , Citocinas/imunologia , Humanos , Ativação Linfocitária , Fator 1 de Transcrição de Octâmero/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Transativadores/genética , Transativadores/imunologia , Coesinas
5.
Proc Natl Acad Sci U S A ; 110(17): 6955-60, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569250

RESUMO

The T helper type 2 (Th2) cytokine genes Il4, Il5, and Il13 are contained within a 140-kb region of mouse chromosome 11 and their expression is controlled by a locus control region (LCR) embedded within this locus. The LCR is composed of a number of DNase I-hypersensitive sites (HSs), which are believed to encompass the regulatory core of the LCR. To determine the function of these sites, mutant mice were generated in which combinations of these HSs had been deleted from the endogenous LCR, and the effect on Th2 cytokine expression was assessed through the use of in vivo and in vitro models. These experiments revealed that, although all of the hypersensitive sites analyzed are important for appropriate LCR function, some sites are more important than others in regulating cytokine expression. Interestingly, each LCR mutation showed contrasting effects on cytokine expression, in some cases with mutants displaying opposing phenotypes between in vitro cultures and in vivo immunizations. These studies indicated that Rad50 hypersensitive site 6 was the singularly most important HS for Th2 cytokine expression, displaying consistent reductions in cytokine levels in all models tested. Furthermore analysis of chromatin modifications revealed that deletion of Rad50 hypersensitive site 6 impacted epigenetic modifications at the promoters of the Il4, Il5, and Il13 genes as well as other regulatory sites within the Th2 locus.


Assuntos
Citocinas/genética , Desoxirribonuclease I/metabolismo , Regulação da Expressão Gênica/imunologia , Região de Controle de Locus Gênico/genética , Células Th2/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hidrolases Anidrido Ácido , Análise de Variância , Animais , Western Blotting , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Mutação/genética , Ovalbumina/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real
6.
Proc Natl Acad Sci U S A ; 110(1): 276-81, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248301

RESUMO

The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation.


Assuntos
Asma/imunologia , Diferenciação Celular/imunologia , Células Th2/imunologia , Fator de Transcrição YY1/imunologia , Animais , Montagem e Desmontagem da Cromatina/imunologia , Imunoprecipitação da Cromatina , Citocinas , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Fator de Transcrição GATA3/metabolismo , Immunoblotting , Imunoprecipitação , Região de Controle de Locus Gênico/genética , Região de Controle de Locus Gênico/imunologia , Luciferases , Camundongos , Camundongos Transgênicos , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
7.
Aesthet Surg J ; 36(8): 941-51, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27246228

RESUMO

BACKGROUND: One increasingly important trend in plastic, reconstructive, and aesthetic surgery is the use of fat grafts to improve cutaneous wound healing. In clinical practice, lipoaspirates (adipose tissue harvested by liposuction) are re-injected in a procedure called lipofilling. Previous studies, however, mainly evaluated the regenerative effect of isolated adipocytes, adipose-derived stem cells, and excised en bloc adipose tissue on keratinocytes, whereas no study to date has examined the effect of lipoaspirates. OBJECTIVES: The authors aimed to investigate differences in the regenerative property of en bloc adipose tissue and lipoaspirates on keratinocytes. METHODS: Human keratinocytes, lipoaspirates, and en bloc adipose tissue from 36 healthy donors were isolated. In vitro proliferation, differentiation, migration, stratification, and wound healing of keratinocyte monolayers were measured. Furthermore, secreted levels of VEGF, bFGF, IGF-1, MMP-9, and MIF were detected by ELISA. RESULTS: Migration, proliferation, and wound healing of keratinocytes were increased by lipoaspirates. Interestingly, the effect of lipoaspirates on keratinocyte proliferation was significantly higher than by en bloc adipose tissue after 5 days. The differentiation of keratinocytes was equally attenuated by lipoaspirates and en bloc adipose tissue. Stratification of keratinocyte layers was enhanced by lipoaspirates and en bloc fat when compared to controls. Lipoaspirates secrete higher levels of bFGF, whereas higher levels of VEGF and IGF-1 are released by en bloc adipose tissue. CONCLUSION: We show that lipoaspirates and en bloc adipose tissue have a regenerative effect on keratinocytes. One reason for the higher effect of lipoaspirates on keratinocyte proliferation may be the secretion of different cytokines.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/cirurgia , Queratinócitos/metabolismo , Lipectomia , Adipócitos/metabolismo , Adolescente , Adulto , Idoso , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 107(23): 10614-9, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20483988

RESUMO

Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.


Assuntos
Asma/imunologia , Citocinas/imunologia , Hipersensibilidade/imunologia , Região de Controle de Locus Gênico , Células Th2/imunologia , Animais , Asma/etiologia , Asma/genética , Asma/patologia , Linhagem da Célula , Citocinas/genética , Regulação da Expressão Gênica , Hipersensibilidade/complicações , Imunidade Inata , Camundongos , Camundongos Knockout , Células Th2/metabolismo
9.
Antioxidants (Basel) ; 12(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237925

RESUMO

Cardiac tissue damage following ischemia leads to cardiomyocyte apoptosis and myocardial fibrosis. Epigallocatechin-3-gallate (EGCG), an active polyphenol flavonoid or catechin, exerts bioactivity in tissues with various diseases and protects ischemic myocardium; however, its association with the endothelial-to-mesenchymal transition (EndMT) is unknown. Human umbilical vein endothelial cells (HUVECs) pretreated with transforming growth factor ß2 (TGF-ß2) and interleukin 1ß (IL-1ß) were treated with EGCG to verify cellular function. In addition, EGCG is involved in RhoA GTPase transmission, resulting in reduced cell mobility, oxidative stress, and inflammation-related factors. A mouse myocardial infarction (MI) model was used to confirm the association between EGCG and EndMT in vivo. In the EGCG-treated group, ischemic tissue was regenerated by regulating proteins involved in the EndMT process, and cardioprotection was induced by positively regulating apoptosis and fibrosis of cardiomyocytes. Furthermore, EGCG can reactivate myocardial function due to EndMT inhibition. In summary, our findings confirm that EGCG is an impact activator controlling the cardiac EndMT process derived from ischemic conditions and suggest that supplementation with EGCG may be beneficial in the prevention of cardiovascular disease.

10.
Biochem Biophys Res Commun ; 424(3): 512-8, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22771806

RESUMO

The Th2 locus control region (LCR) has been shown to be a crucial cis-acting element for Th2 cytokine expression and Th2 cell differentiation. To study the role of Th2 LCR in ifng locus regulation, we examined the expression of IFN-γ in Th2 cells from Th2 LCR-deficient mice. We found IFN-γ to be aberrantly up-regulated. In addition, histone 3(H3)-acetylation and histone 3 lysine 4 (H3-K4)-methylation greatly increased at the ifng locus of the Th2 cells. GATA-3 and STAT6 bound to the ifng promoter in Th2 cells from the wild type but not from the Th2 LCR-deficient mice, and they directly repressed ifng expression in transient reporter assay. Moreover, ectopic expression of GATA-3 and STAT6-VT repressed the aberrant expression of the ifng gene and restored repressive chromatin state at the ifng locus in Th2 cells from Th2 LCR-deficient mice. These results suggest that expression of the ifng gene and chromatin remodeling of the ifng locus are under the control of a Th2 LCR-mediated Th2 differentiation program.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Interferon gama/genética , Células Th2/imunologia , Animais , Sequência de Bases , Diferenciação Celular , Cromatina/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Região de Controle de Locus Gênico/genética , Camundongos , Camundongos Mutantes , Regiões Promotoras Genéticas , Fator de Transcrição STAT6/metabolismo , Células Th2/citologia
11.
BMB Rep ; 55(8): 380-388, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35880434

RESUMO

The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naïve and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics. [BMB Reports 2022; 55(8): 380-388].


Assuntos
Proteínas Imediatamente Precoces , Proteínas de Neoplasias , Neoplasias , Proteínas Supressoras de Tumor , Ciclo Celular , Proliferação de Células , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Immune Netw ; 22(5): e39, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381959

RESUMO

RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

13.
Biochem Biophys Res Commun ; 410(4): 866-71, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21703230

RESUMO

Th2 cell differentiation is critically influenced by transcription factor GATA-3 and by various cis-acting elements including enhancers, silencers and a locus control region (LCR) in the Th2 cytokine locus. Th2 LCR-deficient Th2 cells completely lost the expression of GATA-3 and the phosphorylation of STAT6. Histone 3 lysine 4 (H3-K4) was hypomethylated in the gata3 locus in these cells. GATA-3 and STAT6 bound several regulatory regions in the gata3 locus and transactivated the expression of the gata3 gene. These results suggest that Th2 differentiation program stimulates feed-forward regulation of gata3 gene expression.


Assuntos
Diferenciação Celular/genética , Fator de Transcrição GATA3/genética , Região de Controle de Locus Gênico/genética , Células Th2/citologia , Ativação Transcricional , Animais , Camundongos , Camundongos Mutantes , Fosforilação , Fator de Transcrição STAT6/metabolismo , Células Th2/metabolismo
14.
Immunology ; 131(1): 50-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20636338

RESUMO

GATA-binding protein-3 (GATA-3) regulates the T helper type 2 (Th2) cytokine locus through induction of chromatin remodelling. However, the molecular mechanism for this is poorly understood. To understand this mechanism better, we screened GATA-3 interacting proteins using affinity purification and mass spectrometry. We found that GATA-3 bound to metastasis-associated protein 2 (MTA-2), a component of the NuRD chromatin remodelling complex. GATA-3 and MTA-2 in turn bound to several regulatory regions of the Th2 cytokine locus and the ifng promoter. Cell transfection assay showed that MTA-2 acted as an antagonist with GATA-3 in the expression of Th2 cytokines, but co-operated with GATA-3 in the repression of the ifng gene expression. These results suggest that GATA-3 interacts with MTA-2 to co-ordinately regulate Th2 cytokine and ifng loci during T helper cell differentiation.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Interferon gama/metabolismo , Proteínas S100/metabolismo , Células Th2/citologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Citocinas/genética , Fator de Transcrição GATA3/genética , Humanos , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Células Th2/metabolismo , Transfecção
15.
Immunology ; 129(4): 578-88, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20102415

RESUMO

To explore whether bacterial secreted 4-hydroxy-2-alkylquinolines (HAQs) can regulate host innate immune responses, we used the extracts of bacterial culture supernatants from a wild-type (PA14) and two mutants of Pseudomonas aeruginosa that have defects in making HAQs. Surprisingly, the extract of supernatants from the P. aeruginosa pqsA mutant that does not make HAQs showed strong stimulating activity for the production of innate cytokines such as tumour necrosis factor-alpha and interleukin-6 in the J774A.1 mouse monocyte/macrophage cell line, whereas the extract from the wild-type did not. The addition of 4-hydroxy-2-heptylquinoline (HHQ) or 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal) to mammalian cell culture media abolished this stimulating activity of the extracts of supernatants from the pqsA mutant on the expression of innate cytokines in J774A.1 cells and in the primary bronchoalveolar lavage cells from C57BL/6 mice, suggesting that HHQ and PQS can suppress the host innate immune responses. The pqsA mutant showed reduced dissemination in the lung tissue compared with the wild-type strain in a mouse in vivo intranasal infection model, suggesting that HHQ and PQS may play a role in the pathogenicity of P. aeruginosa. HHQ and PQS reduced the nuclear factor-kappaB (NF-kappaB) binding to its binding sites and the expression of NF-kappaB target genes, and PQS delayed inhibitor of kappaB degradation, indicating that the effect of HHQ and PQS was mediated through the NF-kappaB pathway. Our results suggest that HHQ and PQS produced by P. aeruginosa actively suppress host innate immune responses.


Assuntos
Regulação para Baixo/imunologia , Hidroxiquinolinas/imunologia , Imunidade Inata/imunologia , NF-kappa B/metabolismo , Pseudomonas aeruginosa/imunologia , Percepção de Quorum/imunologia , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Hidroxiquinolinas/química , Hidroxiquinolinas/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/química
16.
Science ; 367(6483): 1255-1260, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165587

RESUMO

T cells maintain a quiescent state prior to activation. As inappropriate T cell activation can cause disease, T cell quiescence must be preserved. Despite its importance, the mechanisms underlying the "quiescent state" remain elusive. Here, we identify BTG1 and BTG2 (BTG1/2) as factors responsible for T cell quiescence. BTG1/2-deficient T cells show an increased proliferation and spontaneous activation due to a global increase in messenger RNA (mRNA) abundance, which reduces the threshold to activation. BTG1/2 deficiency leads to an increase in polyadenylate tail length, resulting in a greater mRNA half-life. Thus, BTG1/2 promote the deadenylation and degradation of mRNA to secure T cell quiescence. Our study reveals a key mechanism underlying T cell quiescence and suggests that low mRNA abundance is a crucial feature for maintaining quiescence.


Assuntos
Proteínas Imediatamente Precoces/fisiologia , Ativação Linfocitária , Proteínas de Neoplasias/fisiologia , Estabilidade de RNA , RNA Mensageiro/química , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Células Cultivadas , Proteínas Imediatamente Precoces/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Poliadenilação , Proteínas Supressoras de Tumor/genética
18.
Nat Commun ; 9(1): 5417, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575729

RESUMO

In response to acute loss of the Ulp2 SUMO-specific protease, yeast become disomic for chromosome I (ChrI) and ChrXII. Here we report that ChrI disomy, which creates an adaptive advantage in part by increasing the dosage of the Ccr4 deadenylase, was eliminated by extended passaging. Loss of aneuploidy is often accompanied by mutations in essential SUMO-ligating enzymes, which reduced polySUMO-conjugate accumulation. The mRNA levels for almost all ribosomal proteins increase transiently upon initial loss of Ulp2, but elevated Ccr4 levels limit excess ribosome formation. Notably, extended passaging leads to increased levels of many small nucleolar RNAs (snoRNAs) involved in ribosome biogenesis, and higher dosage of three linked ChrXII snoRNA genes suppressed ChrXII disomy in ulp2Δ cells. Our data reveal that aneuploidy allows rapid adaptation to Ulp2 loss, but long-term adaptation restores euploidy. Cellular evolution restores homeostasis through countervailing mutations in SUMO-modification pathways and regulatory shifts in ribosome biogenesis.


Assuntos
Adaptação Biológica , Aneuploidia , Endopeptidases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação Puntual , RNA Nucleolar Pequeno/metabolismo , Saccharomyces cerevisiae , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
19.
Immunol Lett ; 197: 63-69, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545108

RESUMO

Yin Yang 1 (YY1) is a ubiquitously expressed transcription factor that functions in cooperation with various cofactors to regulate gene expression. In the immune system, YY1 enhances cytokine production and T helper (Th) 2 effector cell differentiation, resulting in the activation of inflammation. However, no studies have reported the role of YY1 in Th17 cell regulation, which is implicated in rheumatoid arthritis (RA). We investigated the expression of YY1 in Th17 cells in vitro and revealed increased levels of YY1 mRNA and protein. To elucidate the function of YY1 pathogenesis in RA, we used a collagen-induced arthritis (CIA) mouse model with YY1 deficiency. Deficiency of YY1 reduced the severity of arthritis and joint destruction. Moreover, Th17 cells were dramatically reduced in YY1-deficient mice. The cytokine interleukin (IL)-17 was decreased in YY1-deficient CD4+ T cells ex vivo and in vivo. Interestingly, the level of signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor-α, IL-17, IL-6, and IL-1ß were markedly decreased in YY1-deficient mice with CIA. The cytokine-inducing function of YY1 was more specific to IL-17 than to interferon-γ. YY1 plays a role in Th17 cell differentiation and RA pathogenesis. Our findings suggest that future RA therapies should target the regulatory mechanism involved in Th17 cell differentiation, in which YY1 may cooperate with the STAT3 signaling pathway.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Inflamação/imunologia , Articulações/imunologia , Células Th17/imunologia , Células Th2/imunologia , Fator de Transcrição YY1/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Imunomodulação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição YY1/genética
20.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 383-391, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28132936

RESUMO

Subset-specific gene expression is a critical feature of CD4 T cell differentiation. Th2 cells express Th2 cytokine genes including Il4, Il5, and Il13 and mediate the immune response against helminths. The expression of Th2 cytokine genes is regulated by Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region; however, the molecular mechanisms of RHS6 action at the chromatin level are poorly understood. Here, we demonstrate that RHS6 is crucial for chromosomal interactions and nuclear substructure binding of the Th2 cytokine locus. RHS6-deficient cells had a marked reduction in chromatin remodeling and in intrachromosomal interactions at the Th2 locus. Deficiency of RHS6-binding transcription factors GATA3, SATB1, and IRF4 also caused a great reduction in chromatin remodeling and long-range chromosomal interactions involving the Th2 locus. RHS6 deficiency abrogated association of the Th2 locus with the nuclear substructure and RNA polymerase II. Therefore, RHS6 serves as a crucial cis-acting hub for coordinate regulation of Th2 cytokine genes by forming chromosomal loops and binding to a nuclear substructure.


Assuntos
Montagem e Desmontagem da Cromatina/imunologia , Cromossomos de Mamíferos/imunologia , Citocinas/imunologia , Região de Controle de Locus Gênico/imunologia , Células Th2/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Hidrolases Anidrido Ácido , Animais , Montagem e Desmontagem da Cromatina/genética , Cromossomos de Mamíferos/genética , Citocinas/genética , Proteínas de Ligação a DNA , Camundongos , Camundongos Transgênicos , Células Th2/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA