Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(33): 13225-30, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847404

RESUMO

Interest in algae has significantly accelerated with the increasing recognition of their potentially unique role in medical, materials, energy, bioremediation, and synthetic biological research. However, the introduction of tools to study, control, or expand the inner-workings of algae has lagged behind. Here we describe a general molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing small and large cargos into algal cells. Significantly, this method is shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae including Neochloris oleoabundans and Scenedesmus dimorphus thus providing a new and versatile tool for algal research.


Assuntos
Bioquímica/métodos , Parede Celular/metabolismo , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Sondas Moleculares/metabolismo , Proteínas/metabolismo , Transporte Biológico , Escuridão , Flagelos/metabolismo , Citometria de Fluxo , Fluoresceína/metabolismo , Microscopia de Fluorescência , Temperatura
2.
Proc Natl Acad Sci U S A ; 106(33): 14132-7, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666565

RESUMO

Inappropriate activation of the Hedgehog (Hh) signaling pathway has been implicated in a diverse spectrum of cancers, and its pharmacological blockade has emerged as an anti-tumor strategy. While nearly all known Hh pathway antagonists target the transmembrane protein Smoothened (Smo), small molecules that suppress downstream effectors could more comprehensively remediate Hh pathway-dependent tumors. We report here four Hh pathway antagonists that are epistatic to the nucleocytoplasmic regulator Suppressor of Fused [Su(fu)], including two that can inhibit Hh target gene expression induced by overexpression of the Gli transcription factors. Each inhibitor has a unique mechanism of action, and their phenotypes reveal that Gli processing, Gli activation, and primary cilia formation are pharmacologically targetable. We further establish the ability of certain compounds to block the proliferation of cerebellar granule neuron precursors expressing an oncogenic form of Smo, and we demonstrate that Hh pathway inhibitors can have tissue-specific activities. These antagonists therefore constitute a valuable set of chemical tools for interrogating downstream Hh signaling mechanisms and for developing chemotherapies against Hh pathway-related cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Animais , Química Farmacêutica/métodos , Desenho de Fármacos , Epistasia Genética , Fibroblastos/metabolismo , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Neurônios/metabolismo , Fenótipo , Ligação Proteica
3.
Nat Chem Biol ; 5(3): 154-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151731

RESUMO

Small-molecule inhibition of extracellular proteins that activate membrane receptors has proven to be extremely challenging. Diversity-oriented synthesis and small-molecule microarrays enabled the discovery of robotnikinin, a small molecule that binds the extracellular Sonic hedgehog (Shh) protein and blocks Shh signaling in cell lines, human primary keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued by small-molecule agonists of Smoothened, which functions immediately downstream of the Shh receptor Patched.


Assuntos
Proteínas Hedgehog/metabolismo , Lactamas/farmacologia , Lactonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células 3T3 , Animais , Descoberta de Drogas , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lactamas/metabolismo , Lactonas/metabolismo , Camundongos , Receptores Patched , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
Angew Chem Int Ed Engl ; 48(13): 2321-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19222062

RESUMO

Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).


Assuntos
Proteínas Hedgehog/metabolismo , Compostos Heterocíclicos com 2 Anéis/farmacologia , Microtúbulos/metabolismo , Tiazóis/farmacologia , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/antagonistas & inibidores , Compostos Heterocíclicos com 2 Anéis/química , Camundongos , Microtúbulos/efeitos dos fármacos , Células NIH 3T3 , Piridinas/química , Transdução de Sinais , Tiazóis/química
5.
PLoS One ; 7(1): e28802, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242152

RESUMO

INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i) mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii) retention and spatial localization of chemical compounds vary within and between each cell line; and (iii) the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.


Assuntos
Técnicas de Química Combinatória/métodos , Corantes Fluorescentes/metabolismo , Microscopia/métodos , Animais , Arabidopsis/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA