Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 213(3): 1452-1465, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27748949

RESUMO

Tree growth in boreal forests is limited by nitrogen (N) availability. Most boreal forest trees form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve the uptake of inorganic N and also have the capacity to decompose soil organic matter (SOM) and to mobilize organic N ('ECM decomposition'). To study the effects of 'ECM decomposition' on ecosystem carbon (C) and N balances, we performed a sensitivity analysis on a model of C and N flows between plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. The analysis indicates that C and N balances were sensitive to model parameters regulating ECM biomass and decomposition. Under low N availability, the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, increases with increasing relative involvement of ECM fungi in SOM decomposition. Under low N conditions, increased ECM organic N mining promotes tree growth but decreases soil C storage, leading to a negative correlation between C stores above- and below-ground. The interplay between plant production and soil C storage is sensitive to the partitioning of decomposition between ECM fungi and saprotrophs. Better understanding of interactions between functional guilds of soil fungi may significantly improve predictions of ecosystem responses to environmental change.


Assuntos
Sequestro de Carbono , Modelos Biológicos , Micorrizas/metabolismo , Plantas/microbiologia , Solo , Taiga , Carbono/metabolismo , Nitrogênio/metabolismo , Oxirredução
2.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31069387

RESUMO

In boreal ecosystems plant production is often limited by low availability of nitrogen. Nitrogen retention in below-ground organic pools plays an important role in restricting recirculation to plants and thereby hampers forest production. Saprotrophic fungi are commonly assigned to different decomposer strategies, but how these relate to nitrogen cycling remains to be understood. Decomposition of Scots pine needle litter was studied in axenic microcosms with the ligninolytic litter decomposing basidiomycete Gymnopus androsaceus or the stress tolerant ascomycete Chalara longipes. Changes in chemical composition were followed by 13C CP/MAS NMR spectroscopy and nitrogen dynamics was assessed by the addition of a 15N tracer. Decomposition by C. longipes resulted in nitrogen retention in non-hydrolysable organic matter, enriched in aromatic and alkylic compounds, whereas the ligninolytic G. androsaceus was able to access this pool, counteracting nitrogen retention. Our observations suggest that differences in decomposing strategies between fungal species play an important role in regulating nitrogen retention and release during litter decomposition, implying that fungal community composition may impact nitrogen cycling at the ecosystem level.


Assuntos
Fungos/metabolismo , Nitrogênio/metabolismo , Pinus/microbiologia , Florestas , Micobioma , Ciclo do Nitrogênio , Folhas de Planta/microbiologia , Solo/química
3.
PLoS One ; 14(4): e0215594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013322

RESUMO

Landscapes composed of agricultural land mixed with forest are desirable since they provide a wide range of diversified ecosystem services, unlike specialized agricultural landscapes, but that creates a trade-off between these land uses since wildlife usually feed on crops and reduce yields. In Nordic countries, where human population density is low and game hunting can be a viable economic alternative, mixed landscape systems are particularly interesting. To evaluate the economic sustainability of such systems we need to quantify wildlife damage to crops. One important species, being popular among Swedish hunters and therefore economically valuable, is fallow deer (Dama dama). Our objective was to evaluate the economic sustainability of mixed landscape systems including cultivated fields and commercial hunting of fallow deer. We studied the effects of excluding fallow deer by using 86 exclosures and adjacent plots in winter wheat and oat fields in south-west Sweden. We analyzed yield losses and interactions between spatial and temporal grazing patterns, anthropogenic landscape features, and topological characteristics of the landscape. We found that animals avoided exposed spots, irrespective of distance from human activity. We also found a seasonal grazing pattern related to the different growing periods of winter wheat (more grazed, emerging in autumn) and spring oat (less grazed, emerging in spring). We then compared the costs of crop damage against the commercial value of fallow deer hunting. The damage amounted to 375 ±196 € ha-1 for wheat and 152 ±138 € ha-1 for oat, corresponding to a total cost per animal of 82.7 ±81.0 €, while each animal had an estimated market value of approximately 100 €. Therefore the value of fallow deer presence compensated for the associated cost of crop damage. Profit could be further improved in this case by adopting additional management strategies. In general our study confirmed the economic feasibility of this particular mixed land management.


Assuntos
Animais Selvagens , Cervos , Florestas , Desenvolvimento Sustentável , Animais , Análise Custo-Benefício , Proteção de Cultivos/métodos , Produtos Agrícolas/economia , Herbivoria , Humanos , Modelos de Interação Espacial , Estações do Ano , Suécia
4.
New Phytol ; 173(3): 463-480, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244042

RESUMO

Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Temperatura , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA