Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
2.
Appl Environ Microbiol ; 82(17): 5186-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27316957

RESUMO

UNLABELLED: This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE: This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater characteristics. Differences in bacterial community structures between WWTPs were consistent with differences in the abundance of distinctive sets of functional categories, which were related to the metabolic potential that would be expected according to the source of the wastewater.


Assuntos
Bactérias/isolamento & purificação , Metagenômica/métodos , Esgotos/química , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Metagenoma , Filogenia , Esgotos/microbiologia , Águas Residuárias/química
3.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522135

RESUMO

Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.


Assuntos
Transferência Genética Horizontal , Microalgas , Transferência Genética Horizontal/genética , Microalgas/genética , Regiões Árticas , Oceanos e Mares , Camada de Gelo , Bactérias
4.
Science ; 374(6567): 594-599, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709919

RESUMO

Eukaryotic plankton are a core component of marine ecosystems with exceptional taxonomic and ecological diversity, yet how their ecology interacts with the environment to drive global distribution patterns is poorly understood. In this work, we use Tara Oceans metabarcoding data, which cover all major ocean basins, combined with a probabilistic model of taxon co-occurrence to compare the biogeography of 70 major groups of eukaryotic plankton. We uncover two main axes of biogeographic variation. First, more-diverse groups display clearer biogeographic patterns. Second, large-bodied consumers are structured by oceanic basins, mostly through the main current systems, whereas small-bodied phototrophs are structured by latitude and follow local environmental conditions. Our study highlights notable differences in biogeographies across plankton groups and investigates their determinants at the global scale.

5.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33571359

RESUMO

The effects of tillage on soil structure, physiology and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analyzed at two soil depths (0-5 and 5-10 cm) in samples taken 6, 18 and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils 30 months after switching from CT to NT. Bacteria and Archaea OTUs that responded to NT were associated with coarse soil fraction, soil organic carbon and C cycle enzymes, while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


Assuntos
Carbono , Solo , Agricultura , RNA Ribossômico 16S/genética , Microbiologia do Solo
6.
Ann Rev Mar Sci ; 12: 233-265, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899671

RESUMO

Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.


Assuntos
Oceanos e Mares , Fitoplâncton/fisiologia , Biodiversidade , Fotossíntese , Fitoplâncton/classificação
7.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717023

RESUMO

In contemporary oceans diatoms are an important group of eukaryotic phytoplankton that typically dominate in upwelling regions and at high latitudes. They also make significant contributions to sporadic blooms that often occur in springtime. Recent surveys have revealed global information about their abundance and diversity, as well as their contributions to biogeochemical cycles, both as primary producers of organic material and as conduits facilitating the export of carbon and silicon to the ocean interior. Sequencing of diatom genomes is revealing the evolutionary underpinnings of their ecological success by examination of their gene repertoires and the mechanisms they use to adapt to environmental changes. The rise of the diatoms over the last hundred million years is similarly being explored through analysis of microfossils and biomarkers that can be traced through geological time, as well as their contributions to seafloor sediments and fossil fuel reserves. The current review aims to synthesize current information about the evolution and biogeochemical functions of diatoms as they rose to prominence in the global ocean.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Evolução Biológica , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Carbono/metabolismo , Oceanos e Mares
8.
PLoS One ; 9(6): e99722, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24923665

RESUMO

The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1-V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1-V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1-V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa-time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1-V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Amplificação de Genes/genética , Consórcios Microbianos/genética , Análise de Sequência de DNA/estatística & dados numéricos , Viés , Biodiversidade , Genes Bacterianos , Genes Duplicados , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Esgotos/análise , Esgotos/microbiologia
9.
Water Res ; 47(11): 3854-64, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23651515

RESUMO

Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.


Assuntos
Bactérias/classificação , Bactérias/genética , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Resíduos Industriais , Oxigênio , Análise de Componente Principal , RNA Ribossômico 16S/genética , Águas Residuárias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA