RESUMO
BACKGROUND: Current clinical testing methods used to uncover the genetic basis of rare disease have inherent limitations, which can lead to causative pathogenic variants being missed. Within the rare disease arm of the 100 000 Genomes Project (100kGP), families were recruited under the clinical indication 'single autosomal recessive mutation in rare disease'. These participants presented with strong clinical suspicion for a specific autosomal recessive disorder, but only one suspected pathogenic variant had been identified through standard-of-care testing. Whole genome sequencing (WGS) aimed to identify cryptic 'second-hit' variants. METHODS: To investigate the 31 families with available data that remained unsolved following formal review within the 100kGP, SVRare was used to aggregate structural variants present in <1% of 100kGP participants. Small variants were assessed using population allele frequency data and SpliceAI. Literature searches and publicly available online tools were used for further annotation of pathogenicity. RESULTS: Using these strategies, 8/31 cases were solved, increasing the overall diagnostic yield of this cohort from 10/41 (24.4%) to 18/41 (43.9%). Exemplar cases include a patient with cystic fibrosis harbouring a novel exonic LINE1 insertion in CFTR and a patient with generalised arterial calcification of infancy with complex interlinked duplications involving exons 2-6 of ENPP1. Although ambiguous by short-read WGS, the ENPP1 variant structure was resolved using optical genome mapping and RNA analysis. CONCLUSION: Systematic examination of cryptic variants across a multi-disease cohort successfully identifies additional pathogenic variants. WGS data analysis in autosomal recessive rare disease should consider complex structural and small intronic variants as potentially pathogenic second hits.
Assuntos
Doenças Raras , Humanos , Mutação/genética , Sequência de Bases , Éxons , Mapeamento CromossômicoRESUMO
PURPOSE: To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability. METHODS: Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein. RESULTS: Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function. CONCLUSION: SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.
Assuntos
Deficiência Intelectual/genética , Mutação com Perda de Função , Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Linhagem Celular , Estudos de Coortes , Estudos de Associação Genética , Haploinsuficiência/genética , Células HeLa , Humanos , Deficiência Intelectual/fisiopatologia , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Ligação Proteica/genética , Fatores de Transcrição/fisiologia , Sequenciamento Completo do GenomaRESUMO
Cleft lip and palate (CLP) is a relatively common congenital malformation. The etiology is complex and postulated to be a combination of genetic and environmental factors. The genetic loci for nonsyndromic CLP remain poorly characterized. Two families have recently been reported with a chromosome 17p13.3 microduplication and CLP. We report a third family with four individuals affected by nonsyndromic bilateral CLP and a 350-kb chromosome 17p13.3 microduplication (17:1,113,102-1,461,838). Our family possesses the smallest overlapping chromosome 17p13.3 microduplication associated with CLP, narrowing down the critical region for this potential new genetic locus for CLP.