Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 25(5): 633-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25800673

RESUMO

Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.


Assuntos
Processamento Alternativo , DNA Mitocondrial/genética , Genoma , Metabolismo Energético , Variação Genética , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Bioessays ; 38(1): 64-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26660201

RESUMO

Gene expression activity is heterogeneous in a population of isogenic cells. Identifying the molecular basis of this variability will improve our understanding of phenomena like tumor resistance to drugs, virus infection, or cell fate choice. The complexity of the molecular steps and machines involved in transcription and translation could introduce sources of randomness at many levels, but a common constraint to most of these processes is its energy dependence. In eukaryotic cells, most of this energy is provided by mitochondria. A clonal population of cells may show a large variability in the number and functionality of mitochondria. Here, we discuss how differences in the mitochondrial content of each cell contribute to heterogeneity in gene products. Changes in the amount of mitochondria can also entail drastic alterations of a cell's gene expression program, which ultimately leads to phenotypic diversity. Also watch the Video Abstract.


Assuntos
Processamento Alternativo/genética , Heterogeneidade Genética , Mitocôndrias/genética , Transcrição Gênica , DNA Mitocondrial/genética , Células Eucarióticas , Regulação da Expressão Gênica/genética , Humanos
3.
Heliyon ; 10(10): e30811, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774330

RESUMO

This work was conducted to establish the efficiency of an impressed current cathodic protection system for musical instruments' steel strings in protecting them from corrosion caused by human sweat. To conduct this research, the harmonic content degradation of a guitar string subjected to different corrosion stages by artificial human sweat, with and without cathodic protection by an impressed current, was studied. String corrosion is characterised by not only the electrochemical technique of polarisation resistance, but also by weight loss by gravimetric measurements and FESEM microscopy. From the correlation between the acoustic and electrochemical results, it can be concluded that harmonic content degradation of guitar strings increases corrosion but is less significant in the strings protected by impressed current.

4.
Haematologica ; 98(7): 1022-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23349299

RESUMO

The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.


Assuntos
Antígenos CD34/biossíntese , Diferenciação Celular/fisiologia , Proliferação de Células , Sangue Fetal/citologia , Sangue Fetal/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Tamanho Mitocondrial/fisiologia , Animais , Antígenos CD34/sangue , Células Cultivadas , Humanos , Recém-Nascido , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos SCID
5.
PLoS Biol ; 8(12): e1000560, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179497

RESUMO

Populations of genetically identical eukaryotic cells show significant cell-to-cell variability in gene expression. However, we lack a good understanding of the origins of this variation. We have found marked cell-to-cell variability in average cellular rates of transcription. We also found marked cell-to-cell variability in the amount of cellular mitochondrial mass. We undertook fusion studies that suggested that variability in transcription rate depends on small diffusible factors. Following this, in vitro studies showed that transcription rate has a sensitive dependence on [ATP] but not on the concentration of other nucleotide triphosphates (NTPs). Further experiments that perturbed populations by changing nutrient levels and available [ATP] suggested this connection holds in vivo. We found evidence that cells with higher mitochondrial mass, or higher total membrane potential, have a faster rate of transcription per unit volume of nuclear material. We also found evidence that transcription rate variability is substantially modulated by the presence of anti- or prooxidants. Daughter studies showed that a cause of variability in mitochondrial content is apparently stochastic segregation of mitochondria at division. We conclude by noting that daughters that stochastically inherit a lower mitochondrial mass than their sisters have relatively longer cell cycles. Our findings reveal a link between variability in energy metabolism and variability in transcription rate.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Transcrição Gênica , Ciclo Celular , Núcleo Celular/metabolismo , Células Eucarióticas/metabolismo , Células HeLa , Humanos , Potenciais da Membrana , Mitose
6.
PLoS Comput Biol ; 8(3): e1002416, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412363

RESUMO

We present a study investigating the role of mitochondrial variability in generating noise in eukaryotic cells. Noise in cellular physiology plays an important role in many fundamental cellular processes, including transcription, translation, stem cell differentiation and response to medication, but the specific random influences that affect these processes have yet to be clearly elucidated. Here we present a mechanism by which variability in mitochondrial volume and functionality, along with cell cycle dynamics, is linked to variability in transcription rate and hence has a profound effect on downstream cellular processes. Our model mechanism is supported by an appreciable volume of recent experimental evidence, and we present the results of several new experiments with which our model is also consistent. We find that noise due to mitochondrial variability can sometimes dominate over other extrinsic noise sources (such as cell cycle asynchronicity) and can significantly affect large-scale observable properties such as cell cycle length and gene expression levels. We also explore two recent regulatory network-based models for stem cell differentiation, and find that extrinsic noise in transcription rate causes appreciable variability in the behaviour of these model systems. These results suggest that mitochondrial and transcriptional variability may be an important mechanism influencing a large variety of cellular processes and properties.


Assuntos
Ciclo Celular/fisiologia , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Modelos Biológicos , Modelos Estatísticos , Ativação Transcricional/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Tamanho Celular , Simulação por Computador , Humanos
7.
Nucleic Acids Res ; 39(6): 2378-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21071418

RESUMO

Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-ß-III (TUBB3). These transcripts, which produce two distinct protein isoforms localizing to the plasma membrane and the endoplasmic reticulum, seem to be restricted to humans as no detectable chimeric mRNA could be found in MC1R expressing mouse melanocytes. Significantly, treatment with the MC1R agonist α-MSH or activation of the stress response kinase p38-MAPK, both key molecules associated with ultraviolet radiation dermal insult and subsequent skin tanning, result in a shift in expression from MC1R in favour of chimeric MC1R-TUBB3 isoforms in cultured melanocytes. We propose that these chimeric proteins serve to equip melanocytes with novel cellular phenotypes required as part of the pigmentation response.


Assuntos
Processamento Alternativo , Melanócitos/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Tubulina (Proteína)/genética , alfa-MSH/farmacologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 6/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/enzimologia , Camundongos , Dados de Sequência Molecular , Processamento de Terminações 3' de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Tubulina (Proteína)/metabolismo
8.
Antioxidants (Basel) ; 12(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372004

RESUMO

Signaling and detoxification of Reactive Oxygen Species (ROS) are important patho-physiologcal processes. Despite this, we lack comprehensive information on individual cells and cellular structures and functions affected by ROS, which is essential to build quantitative models of the effects of ROS. The thiol groups from cysteines (Cys) in proteins play a major role in redox defense, signaling, and protein function. In this study, we show that the proteins in each subcellular compartment contain a characteristic Cys amount. Using a fluorescent assay for -SH in thiolate form and amino groups in proteins, we show that the thiolate content correlates with ROS sensitivity and signaling properties of each compartment. The highest absolute thiolate concentration was found in the nucleolus, followed by the nucleoplasm and cytoplasm whereas protein thiolate groups per protein showed an inverse pattern. In the nucleoplasm, protein reactive thiols concentrated in SC35 speckles, SMN, and the IBODY that accumulated oxidized RNA. Our findings have important functional consequences, and explain differential sensitivity to ROS.

9.
Front Microbiol ; 14: 1066493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876111

RESUMO

Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.

10.
Front Immunol ; 14: 1200259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475858

RESUMO

Introduction: Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. Methods: Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. Results: We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. Conclusions: Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.


Assuntos
Hormônio do Crescimento , Macrófagos , Humanos , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/metabolismo , Glicólise , Homeostase , Mitocôndrias/metabolismo
11.
Curr Opin Cell Biol ; 14(6): 780-5, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12473354

RESUMO

2001 was the year of the human genome, but the new information has had little immediate impact on the field of nuclear structure. Rather, functional studies - especially on transcription - are leading us to a better understanding of how genomes might organise themselves into structures we call nuclei.


Assuntos
Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Animais , Núcleo Celular/genética , Cromatina/ultraestrutura , Reparo do DNA , Replicação do DNA , Humanos , Modelos Genéticos , Transporte de RNA , Recombinação Genética , Transcrição Gênica
12.
J Cell Biol ; 172(2): 177-87, 2006 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-16418531

RESUMO

The organization of genes within the nucleus may influence transcription. We have analyzed the nuclear positioning of the coordinately regulated alpha- and beta-globin genes and show that the gene-dense chromatin surrounding the human alpha-globin genes is frequently decondensed, independent of transcription. Against this background, we show the frequent juxtaposition of active alpha- and beta-globin genes and of homologous alpha-globin loci that occurs at nuclear speckles and correlates with transcription. However, we did not see increased colocalization of signals, which would be expected with direct physical interaction. The same degree of proximity does not occur between human beta-globin genes or between murine globin genes, which are more constrained to their chromosome territories. Our findings suggest that the distribution of globin genes within erythroblast nuclei is the result of a self-organizing process, involving transcriptional status, diffusional ability of chromatin, and physical interactions with nuclear proteins, rather than a directed form of higher-order control.


Assuntos
Regulação da Expressão Gênica , Globinas/genética , Animais , Núcleo Celular/metabolismo , Separação Celular , Células Cultivadas , Cromossomos , Eritroblastos/citologia , Eritroblastos/fisiologia , Globinas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Camundongos , Transcrição Gênica
13.
J Cell Biol ; 175(3): 389-400, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17074886

RESUMO

In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A-H2B, we identified protein phosphatase (PP) 2C gamma subtype (PP2Cgamma/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A-H2B. The disruption of PP2Cgamma in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cgamma-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.


Assuntos
Eucromatina/metabolismo , Histonas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Amanitinas/farmacologia , Animais , Afidicolina/farmacologia , Cafeína/farmacologia , Galinhas , DNA/biossíntese , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Histonas/genética , Humanos , Fosforilação , Ligação Proteica , Proteína Fosfatase 2C , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
14.
Front Cell Dev Biol ; 9: 770458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957103

RESUMO

The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis. However, the landscape of intrinsic developmental mechanisms guiding the formation of serotonergic sub-systems is unclear. Here, we employed developmental disruption of gene expression specific to serotonergic subsets to probe the contribution of the tyrosine kinase receptor ErbB4 to serotonergic circuit formation and function. Through an in vivo loss-of-function approach, we found that ErbB4 expression occurring in a subset of serotonergic neurons, is necessary for axonal arborization of defined long-range projections to the forebrain but is dispensable for the innervation of other targets of the serotonergic system. We also found that Erbb4-deletion does not change the global excitability or the number of neurons with serotonin content in the dorsal raphe nuclei. In addition, ErbB4-deficiency in serotonergic neurons leads to specific behavioral deficits in memory processing that involve aversive or social components. Altogether, our work unveils a developmental mechanism intrinsically acting through ErbB4 in subsets of serotonergic neurons to orchestrate a precise long-range circuit and ultimately involved in the formation of emotional and social memories.

15.
Blood ; 112(7): 2738-49, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18625887

RESUMO

The transcription factor GATA1 coordinates timely activation and repression of megakaryocyte gene expression. Loss of GATA1 function results in excessive megakaryocyte proliferation and disordered terminal platelet maturation, leading to thrombocytopenia and leukemia in patients. The mechanisms by which GATA1 does this are unclear. We have used in vivo biotinylated GATA1 to isolate megakaryocyte GATA1-partner proteins. Here, several independent approaches show that GATA1 interacts with several proteins in the megakaryocyte cell line L8057 and in primary megakaryocytes. They include FOG1, the NURD complex, the pentameric complex containing SCL/TAL-1, the zinc-finger regulators GFI1B and ZFP143, and the corepressor ETO2. Knockdown of ETO2 expression promotes megakaryocyte differentiation and enhances expression of select genes expressed in terminal megakaryocyte maturation, eg, platelet factor 4 (Pf4). ETO2-dependent direct repression of the Pf4 proximal promoter is mediated by GATA-binding sites and an E-Box motif. Consistent with this, endogenous ETO2, GATA1, and the SCL pentameric complex all specifically bind the promoter in vivo. Finally, as ETO2 expression is restricted to immature megakaryocytes, these data suggest that ETO2 directly represses inappropriate early expression of a subset of terminally expressed megakaryocyte genes by binding to GATA1 and SCL.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Biotinilação , Linhagem Celular , Elementos E-Box/genética , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Fator Plaquetário 4/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Reprodutibilidade dos Testes , Estreptavidina/metabolismo , Ativação Transcricional/genética
16.
Haematologica ; 95(1): 36-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19773260

RESUMO

BACKGROUND: Transcription factors play essential roles in both normal and malignant hematopoiesis. This is the case for the growth factor independent 1b (GFI1B) transcription factor, which is required for erythroid and megakaryocytic differentiation and over-expressed in leukemic patients and cell lines. DESIGN AND METHODS: To investigate GFI1B regulation, we searched for multispecies conserved non-coding elements between GFI1B and neighboring genes. We used a formaldehyde-assisted isolation of regulatory elements (FAIRE) assay and DNase1 hypersensitivity to assess the chromatin conformation of these sites. Next, we analyzed transcription factor binding and histone modifications at the GFI1B locus including the conserved non-coding elements by a chromatin immunoprecipitation assay. Finally, we studied the interaction of the GFI1B promoter and the conserved non-coding elements with the chromatin conformation capture technique and used immunofluorescence to evaluate GFI1B levels in individual cells. RESULTS: We localized several conserved non-coding elements containing multiple erythroid specific transcription factor binding sites at the GFI1B locus. In GFI1B-expressing cells a subset of these conserved non-coding elements and the promoter adopt a close spatial conformation, localize with open chromatin sites, harbor chromatin modifications associated with gene activation and bind multiple transcription factors and co-repressors. Conclusions Our findings indicate that GFI1B regulatory elements behave as activators and repressors. Different protein levels within a cell population suggest that cells must activate and repress GFI1B continuously to control its final level. These data are consistent with a model of GFI1B regulation in which GFI1B binds to its own promoter and to the conserved non-coding elements as its levels rise. This would attract repressor complexes that progressively down-regulate the gene. GFI1B expression would decrease until a stage at which the activating complexes predominate and expression increases.


Assuntos
Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Sequência Conservada/genética , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Transativadores/biossíntese , Transativadores/genética
17.
Sci Rep ; 9(1): 19968, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882898

RESUMO

Zika virus (ZIKV) infection is currently one of the major concerns in human public health due to its association with neurological disorders. Intensive effort has been implemented for the treatment of ZIKV, however there are not currently approved vaccines or antivirals available to combat ZIKV infection. In this sense, the identification of virulence factors associated with changes in ZIKV virulence could help to develop safe and effective countermeasures to treat ZIKV or to prevent future outbreaks. Here, we have compared the virulence of two related ZIKV strains from the recent outbreak in Brazil (2015), Rio Grande do Norte Natal (RGN) and Paraiba. In spite of both viruses being identified in the same period of time and region, significant differences in virulence and replication were observed using a validated mouse model of ZIKV infection. While ZIKV-RGN has a 50% mouse lethal dose (MLD50) of ~105 focus forming units (FFUs), ZIKV-Paraiba infection resulted in 100% of lethality with less than 10 FFUs. Combining deep-sequencing analysis and our previously described infectious ZIKV-RGN cDNA clone, we identified a natural polymorphism in the non-structural protein 2 A (NS2A) that increase the virulence of ZIKV. Moreover, results demonstrate that the single amino acid alanine to valine substitution at position 117 (A117V) in the NS2A was sufficient to convert the attenuated rZIKV-RGN in a virulent Paraiba-like virus (MLD50 < 10 FFU). The mechanism of action was also evaluated and data indicate that substitution A117V in ZIKV NS2A protein reduces host innate immune responses and viral-induced apoptosis in vitro. Therefore, amino acid substitution A117V in ZIKV NS2A could be used as a genetic risk-assessment marker for future ZIKV outbreaks.


Assuntos
Polimorfismo Genético , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia , Zika virus/fisiologia , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Feminino , Genoma Viral , Genômica/métodos , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Virulência/genética , Replicação Viral , Infecção por Zika virus/imunologia
18.
ACS Nano ; 13(6): 7223-7230, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31194513

RESUMO

Laser tweezers afford quantum dot (QD) manipulation for use as localized emitters. Here, we demonstrate fluorescence by radiative energy transfer from optically trapped colloidal QDs (donors) to fluorescent dyes (acceptors). To this end, we synthesized silica-coated QDs of different compositions and triggered their luminescence by simultaneous trapping and two-photon excitation in a microfluidic chamber filled with dyes. This strategy produces a near-field light source with great spatial maneuverability, which can be exploited to scan nanostructures. In this regard, we demonstrate induced photoluminescence of dye-labeled cells via optically trapped silica-coated colloidal QDs placed at their vicinity. Allocating nanoscale donors at controlled distances from a cell is an attractive concept in fluorescence microscopy because it dramatically reduces the number of excited dyes, which improves resolution by preventing interferences from the whole sample, while prolonging dye luminescence lifetime due to the lower power absorbed from the QDs.

19.
Mol Cell Biol ; 25(19): 8592-606, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166640

RESUMO

The DNA-binding hemopoietic zinc finger transcription factor GATA1 promotes terminal megakaryocyte differentiation and restrains abnormal immature megakaryocyte expansion. How GATA1 coordinates these fundamental processes is unclear. Previous studies of synthetic and naturally occurring mutant GATA1 molecules demonstrate that DNA-binding and interaction with the essential GATA1 cofactor FOG-1 (via the N-terminal finger) are required for gene expression in terminally differentiating megakaryocytes and for platelet production. Moreover, acquired mutations deleting the N-terminal 84 amino acids are specifically detected in megakaryocytic leukemia in human Down syndrome patients. In this study, we have systematically dissected GATA1 domains required for platelet release and control of megakaryocyte growth by ectopically expressing modified GATA1 molecules in primary GATA1-deficient fetal megakaryocyte progenitors. In addition to DNA binding, distinct N-terminal regions, including residues in the first 84 amino acids, promote platelet release and restrict megakaryocyte growth. In contrast, abrogation of GATA1-FOG-1 interaction leads to loss of differentiation, but growth of blocked immature megakaryocytes is controlled. Thus, distinct GATA1 domains regulate terminal megakaryocyte gene expression leading to platelet release and restrain megakaryocyte growth, and these processes can be uncoupled.


Assuntos
Fator de Transcrição GATA1/fisiologia , Megacariócitos/citologia , Sequência de Aminoácidos , Animais , Antígenos CD/biossíntese , Plaquetas/metabolismo , Western Blotting , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Separação Celular , Galinhas , Clonagem Molecular , DNA/química , Citometria de Fluxo , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Megacariócitos/metabolismo , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Ligação Proteica , Estrutura Terciária de Proteína , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Células-Tronco/citologia , Tetraspanina 29 , Dedos de Zinco
20.
Viruses ; 10(10)2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301244

RESUMO

The recent outbreaks of Zika virus (ZIKV), its association with Guillain⁻Barré syndrome and fetal abnormalities, and the lack of approved vaccines and antivirals, highlight the importance of developing countermeasures to combat ZIKV disease. In this respect, infectious clones constitute excellent tools to accomplish these goals. However, flavivirus infectious clones are often difficult to work with due to the toxicity of some flavivirus sequences in bacteria. To bypass this problem, several alternative approaches have been applied for the generation of ZIKV clones including, among others, in vitro ligation, insertions of introns and using infectious subgenomic amplicons. Here, we report a simple and novel DNA-launched approach based on the use of a bacterial artificial chromosome (BAC) to generate a cDNA clone of Rio Grande do Norte Natal ZIKV strain. The sequence was identified from the brain tissue of an aborted fetus with microcephaly. The BAC clone was fully stable in bacteria and the infectious virus was efficiently recovered in Vero cells through direct delivery of the cDNA clone. The rescued virus yielded high titers in Vero cells and was pathogenic in a validated mouse model (A129 mice) of ZIKV infection. Furthermore, using this infectious clone we have generated a mutant ZIKV containing a single amino acid substitution (A175V) in the NS2A protein that presented reduced viral RNA synthesis in cell cultures, was highly attenuated in vivo and induced fully protection against a lethal challenge with ZIKV wild-type. This BAC approach provides a stable and reliable reverse genetic system for ZIKV that will help to identify viral determinants of virulence and facilitate the development of vaccine and therapeutic strategies.


Assuntos
Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Células A549 , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , DNA Complementar/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , RNA Viral/genética , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Genética Reversa , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA