Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioprocess Biosyst Eng ; 46(3): 381-391, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35779113

RESUMO

An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.


Assuntos
Poluentes Ambientais , Extremófilos , Bacillus cereus , Águas Residuárias , Lipopeptídeos/química , Tensoativos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Syst Evol Microbiol ; 70(3): 1769-1776, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976852

RESUMO

To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Tamanho do Genoma , Malásia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Pol J Microbiol ; 67(3): 283-290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30451444

RESUMO

Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.


Assuntos
Temperatura Baixa , Hidrogênio/metabolismo , Klebsiella/metabolismo , Regiões Antárticas , Metabolismo dos Carboidratos , Carboidratos , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Klebsiella/genética , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
4.
J Basic Microbiol ; 57(2): 151-161, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859397

RESUMO

Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L-1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.


Assuntos
Alumínio/metabolismo , Anoxybacillus/efeitos dos fármacos , Anoxybacillus/genética , Perfilação da Expressão Gênica , Estresse Fisiológico , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Análise de Sequência de DNA
5.
J Basic Microbiol ; 55(4): 514-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25523650

RESUMO

The Anoxybacillus sp. SK 3-4, previously isolated from a hot spring, was screened for its heavy metals resistance (Al(3+), Mn(2+), Cu(2+), Co(2+), Zn(2+), and Ni(2+)) and the strain was found to be most resistant to aluminum. Significant growth of the strain was observed when it was grown in medium containing aluminum (200 mg L(-1)-800 mg L(-1)) with relative growth rates ranging between 77% and 100%. A gene encoding the aluminum resistance protein (accession number: WP_021095658.1) was found in genome of strain SK 3-4, which revealed high sequence identity (>95%) to its homologues from Anoxybacillus species. Sequence comparisons with two functionally characterized aluminum resistance proteins, namely G2alt and ALU1-P, showed 97% and 81% of sequence identity, respectively. Four putative metal binding sites were detected in SK 3-4 aluminum resistance protein and G2alt at same amino acid residue positions of 186, 195, 198, and 201. Strain SK 3-4 was found to be able to remove aluminum from aqueous solution. This study demonstrated that Anoxybacillus sp. SK 3-4 could be applied in the treatment of aluminum contaminated wastewater.


Assuntos
Alumínio/metabolismo , Alumínio/farmacologia , Anoxybacillus/genética , Anoxybacillus/isolamento & purificação , Fontes Termais/microbiologia , Metais Pesados/farmacologia , Águas Residuárias/microbiologia , Anoxybacillus/efeitos dos fármacos , Anoxybacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sítios de Ligação , Farmacorresistência Bacteriana , Genes Bacterianos , Concentração de Íons de Hidrogênio , Metais Pesados/metabolismo , Filogenia , RNA Ribossômico 16S/genética
6.
Environ Sci Pollut Res Int ; 30(51): 110069-110078, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814051

RESUMO

This review discusses the application of bacterial nanocellulose (BNC) and modified BNC in treating wastewater containing heavy metals and dye contaminants. It also highlights the challenges and future perspectives of BNC and its composites. Untreated industrial effluents containing toxic heavy metals are systematically discharged into public waters. In particular, lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), zinc (Zn), and arsenic (As) are very harmful to human health and, in some cases, may lead to death. Several methods such as chemical precipitation, ion exchange, membrane filtration, coagulation, and Fenton oxidation are used to remove these heavy metals from the environment. However, these methods involve the use of numerous chemicals whilst producing high amount of toxic sludge. Meanwhile, the development of the adsorption-based technique has provided an alternative way of treating wastewater using BNC. Bacterial nanocellulose requires less energy for purification and has higher purity than plant cellulose. In general, the optimum growth parameters are crucial in BNC production. Even though native BNC can be used for the removal of heavy metals and dyes, the incorporation of other materials, such as polyethyleneimine, graphene oxide, calcium carbonate and polydopamine can improve sorption efficiencies.


Assuntos
Metais Pesados , Águas Residuárias , Humanos , Metais Pesados/análise , Zinco , Cobre , Cádmio , Adsorção
7.
Genes (Basel) ; 13(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421811

RESUMO

Robertkochia solimangrovi is a proposed marine bacterium isolated from mangrove soil. So far, the study of this bacterium is limited to taxonomy only. In this report, we performed a genomic analysis of R. solimangrovi that revealed its lignocellulose degrading ability. Genome mining of R. solimangrovi revealed a total of 87 lignocellulose degrading enzymes. These enzymes include cellulases (GH3, GH5, GH9 and GH30), xylanases (GH5, GH10, GH43, GH51, GH67, and GH115), mannanases (GH2, GH26, GH27 and GH113) and xyloglucanases (GH2, GH5, GH16, GH29, GH31 and GH95). Most of the lignocellulolytic enzymes encoded in R. solimangrovi were absent in the genome of Robertkochia marina, the closest member from the same genus. Furthermore, current work also demonstrated the ability of R. solimangrovi to produce lignocellulolytic enzymes to deconstruct oil palm empty fruit bunch (EFB), a lignocellulosic waste found abundantly in palm oil industry. The metabolic pathway taken by R. solimangrovi to transport and process the reducing sugars after the action of lignocellulolytic enzymes on EFB was also inferred based on genomic data. Collectively, genomic analysis coupled with experimental studies elucidated R. solimangrovi to serve as a promising candidate in seawater based-biorefinery industry.


Assuntos
Celulases , Lignina , Lignina/metabolismo , Celulases/genética , Óleo de Palmeira , Bactérias/metabolismo , Genômica
8.
Environ Sci Pollut Res Int ; 27(34): 42948-42959, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725555

RESUMO

The Johor Strait has experienced rapid development of various human activities and served as the main marine aquaculture area for the two countries that bordered the strait. Several fish kill incidents in 2014 and 2015 have been confirmed, attributed to the algal blooms of ichthyotoxic dinoflagellates; however, the cause of fish kill events after 2016 was not clarified and the causative organisms remained unknown. To clarify the potential cause of fish kills along the Johor Strait, a 1-year field investigation was conducted with monthly sampling between May 2018 and April 2019. Monthly vertical profiles of physical water parameters (temperature, salinity, and dissolved oxygen levels) were measured in situ at different depths (subsurface, 1 m, 5 m, and 8 m) depending on the ambient depth of the water column at the sampling stations. The spatial-temporal variability of macronutrients and chlorophyll a content was analyzed. Our results showed that high chlorophyll a concentration (up to 48.8 µg/L) and high biomass blooms of Skeletonema, Chaetoceros, Rhizosolenia, and Thalassiosira were observed seasonally at the inner part of the strait. A hypoxic to anoxic dead zone, with the dissolved oxygen levels ranging from 0.19 to 1.7 mg/L, was identified in the inner Johor Strait, covering an estimated area of 10.3 km2. The occurrence of high biomass diatom blooms and formation of the hypoxic-anoxic zone along the inner part Johor Strait were likely the culprits of some fish kill incidents after 2016.


Assuntos
Diatomáceas , Dinoflagellida , Animais , Biomassa , Clorofila A , Eutrofização
9.
Water Sci Technol ; 60(3): 683-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19657163

RESUMO

Microbial flocs formed from raw textile wastewater in a prototype Aerobic Biofilm Reactor (ABR) system were characterised and studied for their potential use in the treatment of textile wastewater. After 90-100 days of operation, microbial flocs of loose irregular structures were obtained from the reactor with good settling velocity of 33 m/h and sludge volume index (SVI) of 48.2 mL/g. Molecular analysis of the flocs using PCR-amplified 16S rDNA sequence showed 98% homology to those of Bacillus sp, Paenibacillus sp and Acromobacter sp. Detection of Ca(2+)(131 mg/g) and Fe(2+)(131 mg/g) using atomic absorption spectrometer might be implicated with the flocs formation. In addition, presence of Co(2+) and Ni(2+) were indicative of the flocs ability to accumulate at least a fraction of the metals' present in the wastewater. When the flocs were used for the treatment of raw textile wastewater, they showed good removal of COD and colour about 55% and 70% respectively, indicating their potential application.


Assuntos
Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Resíduos Industriais/análise , Têxteis , Aerobiose , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cor , Floculação , Microscopia Eletrônica de Varredura , Oxigênio/isolamento & purificação , Filogenia , Eliminação de Resíduos Líquidos , Purificação da Água
10.
Environ Sci Pollut Res Int ; 25(28): 27959-27970, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062542

RESUMO

A Gram-negative, arsenite-resistant psychrotolerant bacterial strain, Yersinia sp. strain SOM-12D3, was isolated from a biofilm sample collected from a lake at Svalbard in the Arctic area. To our knowledge, this is the first study on the ability of acid-treated and untreated, non-living biomass of strain SOM-12D3 to absorb arsenic. We conducted batch experiments at pH 7, with an initial As(III) concentration of 6.5 ppm, at 30 °C with 80 min of contact time. The Langmuir isotherm model fitted the equilibrium data better than Freundlich, and the sorption kinetics of As(III) biosorption followed the pseudo-second-order rate equation well for both types of non-living biomass. The highest biosorption capacity of the acid-treated biomass obtained by the Langmuir model was 159 mg/g. Further, a high recovery efficiency of 96% for As(III) was achieved using 0.1 M HCl within four cycles, which indicated high adsorption/desorption. Fourier transformed infrared (FTIR) demonstrated the involvement of hydroxyl, amide, and amine groups in As(III) biosorption. Field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDAX) indicated the different morphological changes occurring in the cell after acid treatment and arsenic biosorption. Our results highlight the potential of using acid-treated non-living biomass of the psychrotolerant bacterium, Yersinia sp. Strain SOM-12D3 as a new biosorbent to remove As(III) from contaminated waters.


Assuntos
Arsenitos/análise , Poluentes Químicos da Água/análise , Yersinia/química , Adsorção , Regiões Árticas , Arsenitos/toxicidade , Biomassa , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Svalbard , Termodinâmica , Poluentes Químicos da Água/toxicidade , Yersinia/efeitos dos fármacos , Yersinia/isolamento & purificação
11.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074663

RESUMO

Microbacterium sp. strain SZ1 isolated from gold ores of a Malaysia gold mine was found to be highly resistant to arsenic. Here, we report the draft genome sequence of SZ1, which may provide further insights into understanding its arsenic resistance mechanism. In this draft genome, a complete set of ars operons and two additional scattered ars genes were encoded.

12.
Pak J Biol Sci ; 20(6): 306-313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023055

RESUMO

BACKGROUND AND OBJECTIVE: A new green technology to reduce environmental damages while optimizing production of Pacific Whiteleg shrimp, Litopenaeus vannamei was developed known as "Biofloc technology". Microbial communities in biofloc aggregates are responsible in eliminating water exchange and producing microbial proteins that can be used as supplemented feed for L. vannamei. This study aimed to isolate and identify potential bioflocculant-producing bacteria to be used as inoculum for rapid formation of biofloc. MATERIALS AND METHODS: For the purpose of this study, bacterial communities during 0, 30 and 70 days of culture (DOC) of L. vannamei grow-out ponds were isolated and identified through phenotypic and 16S rDNA sequences analysis. Phylogenetic relationships between isolated bacteria were then evaluated through phylogenetic tree analysis. One-way analysis of variance (ANOVA) was used to compare the differences of microbial communities at each DOC. RESULTS: Out of 125 bacterial isolates, nine species of bacteria from biofloc were identified successfully. Those bacteria species were identified as Halomonas venusta, H. aquamarina, Vibrio parahaemolyticus, Bacillus infantis, B. cereus, B. safensis, Providencia vermicola, Nitratireductor aquimarinus and Pseudoalteromonas sp., respectively. Through phylogenetic analysis, these isolates belong to Proteobacteria and Firmicutes families under the genera of Halomonas sp., Vibrio sp., Bacillus sp., Providencia sp., Nitratireductor sp. and Pseudoalteromonas sp. CONCLUSION: In this study, bioflocculant-producing bacteria were successfully identified which are perfect candidates in forming biofloc to reduce water pollution towards a sustainable aquaculture industry. Presence of Halomonas sp. and Bacillus sp. in all stages of biofloc formation reinforces the need for new development regarding the ability of these species to be used as inoculum in forming biofloc rapidly.


Assuntos
Aquicultura/métodos , Bactérias/classificação , Penaeidae/microbiologia , Microbiologia da Água , Purificação da Água/métodos , Qualidade da Água , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Floculação , Processos Heterotróficos , Penaeidae/crescimento & desenvolvimento , Filogenia , Ribotipagem
13.
3 Biotech ; 6(2): 143, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330215

RESUMO

The biggest agricultural sector that contributes to the Malaysian economy is the oil palm industry. The effluent generated during the production of crude palm oil known as palm oil mill effluent (POME). POME undergoes anaerobic treatment that requires long retention time and produces large amount of methane that consequently contributes to global warming. In this study, an isolated bacteria was selected based on its ability to degrade kraft lignin (KL) and identified as Ochrobactrum sp. The bacteria were able to treat POME (from anaerobic pond) under the aerobic condition without addition of nutrient, resulting in a significant chemical oxygen demand (COD) removal of 71 %, removal rate of 1385 mg/l/day, and 12.3 times higher than that of the ponding system. It has also resulted in 60 % removal of ammoniacal nitrogen and 55 % of total polyphenolic after 6-day treatment period with the detection of lignocellulolytic enzymes.

14.
3 Biotech ; 6(2): 195, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330267

RESUMO

Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.

15.
Environ Sci Pollut Res Int ; 22(15): 11669-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25850745

RESUMO

Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.


Assuntos
Ascomicetos/enzimologia , Compostos Azo/metabolismo , Poluentes Químicos da Água/metabolismo , Ascomicetos/citologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Compostos Azo/química , Compostos Azo/toxicidade , Cor , Espaço Extracelular/enzimologia , Têxteis , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
16.
Bioresour Technol ; 190: 458-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25799955

RESUMO

A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos/microbiologia , Óleos de Plantas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Esgotos/microbiologia , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Transferência de Energia , Resíduos Industriais/prevenção & controle , Óleo de Palmeira , Pseudomonas aeruginosa/classificação , Eliminação de Resíduos/métodos
17.
Environ Sci Pollut Res Int ; 21(6): 4397-408, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24327114

RESUMO

Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.


Assuntos
Ascomicetos/fisiologia , Óleos de Plantas/química , Poluentes Químicos da Água/química , Ascomicetos/metabolismo , Biodegradação Ambiental , Cor , Corantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Resíduos Industriais/análise , Lacase/metabolismo , Lignina/metabolismo , Óleo de Palmeira , Peroxidases/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
18.
Environ Sci Pollut Res Int ; 21(5): 3891-906, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24293297

RESUMO

This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.


Assuntos
Compostos Azo/metabolismo , Bacillales/metabolismo , Benzenossulfonatos/metabolismo , Corantes/metabolismo , Enterococcus faecalis/metabolismo , Aerobiose , Anaerobiose , Compostos Azo/toxicidade , Bacillales/genética , Sequência de Bases , Benzenossulfonatos/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Ribossômico/genética , Enterococcus faecalis/genética , Germinação/efeitos dos fármacos , Dados de Sequência Molecular , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Sementes/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Appl Biochem Biotechnol ; 171(8): 2247-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037600

RESUMO

The ability of non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment to adsorb As (III) from aqueous solution in batch experiments was investigated as a function of contact time, initial As (III) concentration, pH, temperature and biomass dosage. Langmuir model fitted the equilibrium data better in comparison to Freundlich isotherm. The maximum biosorption capacity of the sorbent, as obtained from the Langmuir isotherm, was 153.41 mg/g. The sorption kinetic of As (III) biosorption followed well the pseudo-second-order rate equation. The Fourier transform infrared spectroscopy analysis indicated the involvement of hydroxyl, amide and amine groups in As (III) biosorption process. Field emission scanning electron microscopy-energy dispersive X-ray analysis of the non-living B. cereus SZ2 biomass demonstrated distinct cell morphological changes with significant amounts of As adsorbed onto the cells compared to non-treated cells. Desorption of 94 % As (III) was achieved at acidic pH 1 showing the capability of non-living biomass B. cereus SZ2 as potential biosorbent in removal of As (III) from arsenic-contaminated mining effluent.


Assuntos
Arsênio/toxicidade , Bacillus cereus/crescimento & desenvolvimento , Biodegradação Ambiental , Adsorção , Bacillus cereus/efeitos dos fármacos , Biomassa , Ouro , Humanos , Cinética , Temperatura , Termodinâmica , Poluentes Químicos da Água/química
20.
Environ Sci Pollut Res Int ; 20(5): 2912-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23054764

RESUMO

The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.


Assuntos
Aspergillus fumigatus/metabolismo , Óleos de Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Purificação da Água/métodos , Absorção , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Biodegradação Ambiental , Cinética , Malásia , Dados de Sequência Molecular , Óleo de Palmeira , Análise de Sequência de DNA , Homologia de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA