Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 40(6): 936-48, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24931123

RESUMO

Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN) and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein has antiviral activity and mediates RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone-marrow-derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL, Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , RNA Helicases DEAD-box/imunologia , Infecções por Vírus de DNA/imunologia , Interferon Tipo I/imunologia , Infecções por Vírus de RNA/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , Proteína DEAD-box 58 , Células HCT116 , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliubiquitina , Ligação Proteica/imunologia , Interferência de RNA , RNA Interferente Pequeno , Receptores Imunológicos , Transdução de Sinais/imunologia , Replicação Viral/imunologia
2.
Nucleic Acids Res ; 43(10): 5236-48, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925578

RESUMO

The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2'-5' linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling.


Assuntos
2',5'-Oligoadenilato Sintetase/química , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/química , Proteínas de Ligação a RNA/química , 2',5'-Oligoadenilato Sintetase/metabolismo , Proteína DEAD-box 58 , Células HEK293 , Humanos , Modelos Moleculares , Multimerização Proteica , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Transdução de Sinais
3.
J Virol ; 88(24): 14222-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25275129

RESUMO

UNLABELLED: The members of the oligoadenylate synthetase (OAS) family of proteins are antiviral restriction factors that target a wide range of RNA and DNA viruses. They function as intracellular double-stranded RNA (dsRNA) sensors that, upon binding to dsRNA, undergo a conformational change and are activated to synthesize 2'-5'-linked oligoadenylates (2-5As). 2-5As of sufficient length act as second messengers to activate RNase L and thereby restrict viral replication. We expressed human OAS3 using the baculovirus system and purified it to homogeneity. We show that recombinant OAS3 is activated at a substantially lower concentration of dsRNA than OAS1, making it a potent in vivo sensor of dsRNA. Moreover, we find that OAS3 synthesizes considerably longer 2-5As than previously reported, and that OAS3 can activate RNase L intracellularly. The combined high affinity for dsRNA and the capability to produce 2-5As of sufficient length to activate RNase L suggests that OAS3 is a potent activator of RNase L. In addition, we provide experimental evidence to support one active site of OAS3 located in the C-terminal OAS domain and generate a low-resolution structure of OAS3 using SAXS. IMPORTANCE: We are the first to purify the OAS3 enzyme to homogeneity, which allowed us to characterize the mechanism utilized by OAS3 and identify the active site. We provide compelling evidence that OAS3 can produce 2'-5'-oligoadenylates of sufficient length to activate RNase L. This is contrary to what is described in the current literature but agrees with recent in vivo data showing that OAS3 harbors an antiviral activity requiring RNase L. Thus, our work redefines our understanding of the biological role of OAS3. Furthermore, we used a combination of mutagenesis and small-angle X-ray scattering to describe the active site and low-resolution structure of OAS3.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Endorribonucleases/metabolismo , Oligorribonucleotídeos/metabolismo , Nucleotídeos de Adenina/genética , Nucleotídeos de Adenina/isolamento & purificação , Sequência de Aminoácidos , Baculoviridae/genética , Domínio Catalítico , Ativação Enzimática , Expressão Gênica , Vetores Genéticos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/isolamento & purificação , Conformação Proteica , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
4.
Front Pharmacol ; 10: 350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024316

RESUMO

Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor-arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB1) and 2 (CB2) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest - an important control. The ability of a selection of CB1 and CB2 agonists to stimulate cell surface translocation of human and bovine ß-arrestin-1 and -2 was assessed. We find that some CB1 ligands induce moderate ß-arrestin-2 translocation in comparison with vasopressin V2 receptor (a robust arrestin recruiter); however, CB1 coupling with ß-arrestin-1 and CB2 with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of ß-arrestin-2 via CB1. Δ9-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB1 or CB2; however, control experiments revealed translocation in cells not expressing CB1/CB2, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB1/CB2-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB1/CB2 ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.

5.
ACS Chem Neurosci ; 10(10): 4350-4360, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31513380

RESUMO

Recreational consumption of synthetic cannabinoid receptor agonists (SCRAs) is a growing crisis in public health in many parts of the world. AMB-FUBINACA is a member of this class of drugs and is responsible for a large proportion of SCRA-related toxicity both in New Zealand and internationally. Strikingly, little is currently known about the mechanisms by which SCRAs exert toxic effects or whether their activity through the CB1 cannabinoid receptor (the mediator of cannabinoid-related psychoactivity) is sufficient to explain clinical observations. The current study therefore set out to perform a basic molecular pharmacology characterization of AMB-FUBINACA (in comparison to traditional research cannabinoids CP55,940, WIN55,212-2, and Δ9-THC) in fundamental pathways of receptor activity, including cAMP inhibition, pERK activation, ability to drive CB1 internalization, and ability to induce translocation of ß-arrestins-1 and -2. Activity pathways were then compared by operational analysis to indicate whether AMB-FUBINACA may be a biased ligand. Results revealed that AMB-FUBINACA is highly efficacious and potent in all pathways assayed. However, surprisingly, bias analysis suggested that Δ9-THC, not AMB-FUBINACA, may be a biased ligand, with it being less active in both arrestin pathways than predicted by the activity of the other ligands tested. These data may help predict molecular characteristics of SCRAs. However, more research is required to determine whether these molecular effects manifest in toxicity at tissue/system level.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Indazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Valina/análogos & derivados , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Valina/farmacologia , beta-Arrestinas/metabolismo
6.
Cannabis Cannabinoid Res ; 2(1): 48-60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861504

RESUMO

An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.

7.
J Interferon Cytokine Res ; 35(5): 359-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25517543

RESUMO

The oligoadenylate synthetase (OAS) proteins are traditionally considered intracellular antiviral proteins that mediate antiviral activity through the synthesis of 2'-5'-linked oligoadenylates and subsequent activation of the endoribonuclease RNase L. However, we have recently demonstrated that exogenous recombinant OAS1 is taken up by cells and reduces viral replication both in cell culture and in vivo, independent of RNase L. These results demonstrate a novel paracrine antiviral activity of OAS working in parallel with the classical RNase L pathway. In this study, we investigate the uptake kinetics of recombinant porcine OAS1 and show that it is rapidly and efficiently internalized in a manner that can be blocked by heparin. Heparin, furthermore, abolishes the antiviral activity of OAS1, demonstrating the requirement of the intracellular localization of OAS1 to inhibit the virus. In addition, we demonstrate that exogenous OAS1 affects an early step of the viral replication cycle.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Replicação Viral , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/farmacologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Vírus da Encefalomiocardite/efeitos dos fármacos , Vírus da Encefalomiocardite/fisiologia , Espaço Extracelular , Células HeLa , Heparina/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Suínos , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA