Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(1): 181-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971544

RESUMO

Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1ß is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1ß gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1ß gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1ß KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1ß deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1ß. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1ß deletion-potentiated and ACR-induced neurotoxicity in mice.


Assuntos
Acrilamida , Síndromes Neurotóxicas , Animais , Camundongos , Acrilamida/toxicidade , Encéfalo , Córtex Cerebral , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/genética
2.
Int J Mol Sci ; 24(12)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373040

RESUMO

Epidemiological studies showed the association between air pollution and dementia. A soluble fraction of particulate matters including polycyclic aromatic hydrocarbons (PAHs) is suspected to be involved with the adverse effects of air pollution on the central nervous system of humans. It is also reported that exposure to benzopyrene (B[a]P), which is one of the PAHs, caused deterioration of neurobehavioral performance in workers. The present study investigated the effect of B[a]P on noradrenergic and serotonergic axons in mouse brains. In total, 48 wild-type male mice (10 weeks of age) were allocated into 4 groups and exposed to B[a]P at 0, 2.88, 8.67 or 26.00 µg/mice, which is approximately equivalent to 0.12, 0.37 and 1.12 mg/kg bw, respectively, by pharyngeal aspiration once/week for 4 weeks. The density of noradrenergic and serotonergic axons was evaluated by immunohistochemistry in the hippocampal CA1 and CA3 areas. Exposure to B[a]P at 2.88 µg/mice or more decreased the density of noradrenergic or serotonergic axons in the CA1 area and the density of noradrenergic axons in the CA3 area in the hippocampus of mice. Furthermore, exposure to B[a]P dose-dependently upregulated Tnfα at 8.67 µg/mice or more, as well as upregulating Il-1ß at 26 µg/mice, Il-18 at 2.88 and 26 µg/mice and Nlrp3 at 2.88 µg/mice. The results demonstrate that exposure to B[a]P induces degeneration of noradrenergic or serotonergic axons and suggest the involvement of proinflammatory or inflammation-related genes with B[a]P-induced neurodegeneration.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Masculino , Camundongos , Animais , Recém-Nascido , Benzo(a)pireno/toxicidade , Axônios , Encéfalo , Hipocampo
3.
Int Arch Occup Environ Health ; 95(7): 1557-1565, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212801

RESUMO

OBJECTIVES: Carbon fibers are used in a variety of industrial applications, based on their lightweight and high stiffness properties. There is little information on the characteristics and exposure levels of debris generated during the factory processing of carbon fibers or their composites. This study revisits the general assumption that carbon fibers or their debris released during composite processing are considered safe for human health. METHODS: The present interventional study was conducted at a factory located in Japan, and involved on-site collection of debris generated during the industrial processing of polyacrylonitrile (PAN)-based carbon-fiber-reinforced plastic (CFRP). The debris were collected before being exhausted locally from around different factory machines and examined morphologically and quantitatively by scanning electron microscopy. The levels of exposure to respirable carbon fibers at different areas of the factory were also quantified. RESULTS: The collected debris mainly contained the original carbon fibers broken transversely at the fiber's major axis. However, carbon fiber fragments morphologically compatible with the WHO definition of respirable fibers (length: > 5 µm, width: < 3 µm, length/width ratio: > 3:1) were also found. The concentrations of respirable fibers at the six examined factory areas under standard working conditions in the same factory were below the standard limit of 10 fibers/L, specified for asbestos dust-generating facilities under the Air Pollution Control Law in Japan. CONCLUSIONS: Our study identified potentially dangerous respirable fibers with high aspect ratio, which was generated during the processing of PAN-based CFRP. Regular risk assessment of carbon fiber debris is necessary to ensure work environment safety.


Assuntos
Poluentes Ocupacionais do Ar , Carbono , Fibra de Carbono , Humanos , Exposição por Inalação , Plásticos
4.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206048

RESUMO

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


Assuntos
Inflamação/genética , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Síndromes Neurotóxicas/genética , Sulfóxidos/farmacologia , Acrilamida/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/genética , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos
5.
Chem Res Toxicol ; 33(5): 1226-1236, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32319286

RESUMO

Nanoparticles (NPs) are widely used in food, and analysis of their potential gastrointestinal toxicity is necessary. The present study was designed to determine the effects of silica dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on cultured THP-1 monocyte-derived macrophages and human epithelial colorectal adenocarcinoma (Caco-2) cells. Exposure to ZnO NPs for 24 h increased the production of redox response species (ROS) and reduced cell viability in a dose-dependent manner in THP-1 macrophages and Caco-2 cells. Although TiO2 and SiO2 NPs induced oxidative stress, they showed no apparent cytotoxicity against both cell types. The effects of functionalized SiO2 NPs on undifferentiated and differentiated Caco-2 cells were investigated using fluorescently labeled SiO2 NPs with neutral, positive, or negative surface charge. Exposure of both types of cells to the three kinds of SiO2 NPs significantly increased their interaction in a dose-dependent manner. The largest interaction with both types of cells was noted with exposure to more negatively surface-charged SiO2 NPs. Exposure to either positively or negatively, but not neutrally, surface-charged SiO2 NPs increased NO levels in differentiated Caco-2 cells. Exposure of differentiated Caco-2 cells to positively or negatively surface-charged SiO2 NPs also upregulated interleukin-8 expression. We conclude that functionalized surface-charged SiO2 NPs can induce pro-inflammatory responses but are noncytotoxic.


Assuntos
Interleucina-8/biossíntese , Nanopartículas/química , Óxido Nítrico/biossíntese , Dióxido de Silício/farmacologia , Células CACO-2 , Humanos , Dióxido de Silício/química , Propriedades de Superfície
6.
Arch Toxicol ; 94(8): 2691-2705, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32435916

RESUMO

1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice co-treated with 1-ABT. 1-ABT mitigated the differential expression of these proteins. The gene ontology enrichment analysis showed overrepresentation of proteins functionally related to nickel cation binding, carboxylic ester hydrolase activity, and catalytic activity. The results demonstrated that exposure to 1,2-DCP altered the expression of proteins related with catalytic and carboxylic ester hydrolase activities, and that such effect was mediated by P450 enzymatic activity.


Assuntos
Carcinógenos Ambientais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Propano/análogos & derivados , Proteoma/efeitos dos fármacos , Proteômica , Animais , Hidrolases de Éster Carboxílico/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Propano/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
7.
Environ Health Prev Med ; 25(1): 31, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703154

RESUMO

BACKGROUND: Various treatments for hepatocellular carcinoma (HCC) are utilized in clinical practice; however, the prognosis is still poor on account of high recurrence rates. DNA methylation levels of CpG islands around promoters (promoter CpGis) inversely regulate gene expression and closely involved in carcinogenesis. As a new strategy, several chemicals globally inhibiting DNA methylation have been developed aiming at reducing DNA methylation levels and maintaining the expression of tumor suppressor genes. On the other hand, since these drugs nonspecifically modify DNA methylation, they can cause serious adverse effects. In order to ameliorate the methods by targeting specific CpGs, information of cancer-related genes that are regulated by DNA methylation is required. METHODS: We searched candidate genes whose expressions were regulated by DNA methylation of promoter CpGi and which are involved in HCC cases. To do so, we first identified genes whose expression were changed in HCC by comparing gene expressions of 371 HCC tissues and 41 non-tumor tissues using the Cancer Genome Atlas (TCGA) database. The genes were further selected for poor prognosis by log-rank test of Kaplan-Meier plot and for cancer relevance by Pubmed search. Expression profiles of upregulated genes in HCC tissues were assessed by Gene Ontology (GO) analysis. Finally, using DNA methylation data of TCGA database, we selected genes whose promoter DNA methylation levels were inversely correlated with gene expression. RESULTS: We found 115 genes which were significantly up- or downregulated in HCC tissues and were associated with poor prognosis and cancer relevance. The upregulated genes were significantly enriched in cell division, cell cycle, and cell proliferation. Among the upregulated genes in HCC, we identified hypomethylation of CpGis around promoters of FANCB, KIF15, KIF4A, ERCC6L, and UBE2C. In addition, TCGA data showed that the tumor suppressor gene P16 is unexpectedly overexpressed in many types of cancers. CONCLUSIONS: We identified five candidate genes whose expressions were regulated by DNA methylation of promoter CpGi and associate with cancer cases and poor prognosis in HCC. Modification of site-specific DNA methylation of these genes enables a different approach for HCC treatment with higher selectivity and lower adverse effects.


Assuntos
Carcinoma Hepatocelular/genética , Ilhas de CpG/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Bases de Dados como Assunto , Humanos , Neoplasias Hepáticas/metabolismo , Regiões Promotoras Genéticas
8.
Part Fibre Toxicol ; 16(1): 47, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842927

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnO-NPs) are widely used in many industrial sectors and previous studies have reported that exposure of the lungs to ZnO-NPs induces both acute and/or chronic pulmonary inflammation, but the exact mechanism underlying such response remains elusive. This study investigated the role of nuclear factor-erythroid 2-related factor (Nrf2) in pulmonary inflammation induced by exposure to ZnO-NPs using Nrf2 null (Nrf2-/-) mice. METHODS: Twenty-four male Nrf2-/- mice and thirty male wild type C57BL/6 J mice were divided into three groups of eight and ten each respectively, and exposed once to ZnO-NPs at 0, 10, 30 µg/mouse by pharyngeal aspiration. At 14 days after the exposure to ZnO-NPs, bronchoalveolar lavage fluid (BALF) and lungs were collected to quantify protein level and the number of inflammatory cells. The mRNA levels of Nrf2-dependent antioxidant enzymes and inflammatory cytokines in lung tissue were measured. RESULTS: Exposure to ZnO-NPs dose-dependently increased the number of total cells, macrophages, lymphocytes and eosinophils in BALF both in Nrf2-/- mice and wild type mice, but the magnitude of increase was significantly higher in Nrf2-/- mice than wild type mice. The number of neutrophils in BALF increased in Nrf2-/- mice, being accompanied by marginal trend of increase in mRNA expression of MIP-2, neutrophil chemoattractant, but such changes were not observed in wild type mice. Exposure to ZnO-NPs did not dose-dependently increase mRNA level of Nrf2-dependent antioxidant enzymes both in Nrf2-/- mice and wild type mice. CONCLUSION: Pharyngeal aspiration of ZnO-NPs induced infiltration of inflammatory cells in the lung of mice, but minimally induced Nrf2-dependent antioxidant enzymes. The results suggest that Nrf2 play a role in negative regulation on ZnO-NP exposure-induced neutrophil migration, but does not demonstrate that the regulation is through suppression of oxidative stress.


Assuntos
Pulmão/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/toxicidade , Pneumonia/induzido quimicamente , Óxido de Zinco/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Exposição por Inalação/efeitos adversos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Pneumonia/imunologia , Pneumonia/patologia
9.
Part Fibre Toxicol ; 16(1): 19, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014371

RESUMO

BACKGROUND: Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS: Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Fibras Minerais/toxicidade , Nanopartículas/toxicidade , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Humanos , Nanopartículas/química , Tamanho da Partícula , Material Particulado/química , Medição de Risco , Gestão de Riscos , Propriedades de Superfície
10.
Part Fibre Toxicol ; 16(1): 26, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248442

RESUMO

After the publication of this article [1] it was hihglighted that the number of deaths related to natural disasters was incorrectly reported in the second paragraph of the Hazards from Natural particulates and the evolution of the biosphere section. This correction article shows the correct and incorrect statement. This correction does not change the idea presented in the article that from an evolutionary view point, natural disasters account only for a small fraction of the people on the planet. The original article has been updated.

11.
Arch Toxicol ; 93(6): 1543-1553, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31016362

RESUMO

Aryl hydrocarbon receptor (AHR) is a transcription factor that binds to DNA as a heterodimer with the AHR nuclear translocator (ARNT) after interaction with ligands, such as polycyclic and halogenated aromatic hydrocarbons and other xenobiotics. The endogenous ligands and functions of AHR have been the subject of many investigations. In the present study, the potential role of AHR signaling in the development of left ventricular hypertrophy and cardiac fibrosis by angiotensin II (Ang II) infusion was investigated in mice lacking the AHR gene (Ahr-/-). We also assessed the hypothesis that fenofibrate, a peroxisome proliferator-activated receptor-α (PPARα) activator, reduces cardiac fibrosis through the c-Jun signaling. Male Ahr-/- and age-matched wild-type mice (n = 8 per group) were infused with Ang II at 100 ng/kg/min daily for 2 weeks. Treatment with Ang II increased systolic blood pressure to comparable levels in Ahr-/- and wild-type mice. However, Ahr-/- mice developed severe cardiac fibrosis after Ang II infusion compared with wild-type mice. Ang II infusion also significantly increased the expression of endothelin in the left ventricles of Ahr-/- mice, but not in wild-type mice, and significantly increased the c-Jun signaling in Ahr-/- mice. Ang II infusion also significantly enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and the downstream target vascular endothelial growth factor (VEGF) in the left ventricles of Ahr-/- mice. These results suggested pathogenic roles for the AHR signaling pathway in the development of cardiac fibrosis. Treatment with fenofibrate reduced cardiac fibrosis and abrogated the effects of Ang II on the expression of endothelin, HIF-1α, and VEGF. The inhibitory effect of fenofibrate on cardiac fibrosis was mediated by suppression of VEGF expression through modulation of c-Jun/HIF-1α signaling.


Assuntos
Angiotensina II/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Miocárdio/patologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Fenofibrato/farmacologia , Fibrose , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Knockout , PPAR alfa/agonistas , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
12.
Arch Toxicol ; 93(7): 2007-2019, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073625

RESUMO

Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1ß, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0-36 h; 50 µM) and dose- (0-500 µM; 24 h) dependent increase in mRNA expression of IL-1ß and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1ß, and IL-18 in BV-2 microglia.


Assuntos
Acrilamida/toxicidade , Córtex Cerebral/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Microglia/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/imunologia , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamação , Masculino , Camundongos , Microglia/imunologia , Síndromes Neurotóxicas/imunologia , Ratos Wistar
13.
Arch Toxicol ; 93(7): 1993-2006, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123803

RESUMO

Acrylamide has been used industrially and also found in certain foods cooked at high temperatures. Previous reports described acrylamide-related human intoxication who presented with ataxia, memory impairment, and/or illusion. The aim of this study was to characterize the molecular mechanisms of neurotoxicity of acrylamide by analyzing the expression levels of various proteins in the hippocampus of rats exposed to acrylamide. Male Wistar rats were administered acrylamide by gavage at 0, 2, and 20 mg/kg for 1 week or 0, 0.2, 2, and 20 mg/kg for 5 weeks. At the end of the experiment, the hippocampus was dissected out and proteins were extracted for two-dimensional difference gel electrophoresis combined with matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). MALDI-TOF/TOF/MS identified significant changes in two proteins in the 1-week and 22 proteins in the 5-week exposure groups. These changes were up-regulation in 9 and down-regulation in 13 proteins in the hippocampus of rats exposed to acrylamide at 20 mg/kg for 5 weeks. PANTHER overrepresentation test based on the GO of biological process showed significant overrepresentation in proteins annotated to nicotinamide nucleotide metabolic process, coenzyme biosynthetic process, pyruvate metabolic process, and carbohydrate metabolic process. The test also showed significant overrepresentation in proteins annotated to creatinine kinase activity for the GO of molecular function as well as myelin sheath, cytoplasmic part, and cell body for the GO of cellular component. Comparison with a previous proteomic study on hippocampal proteins in rats exposed to 1-bromopropane identified triosephosphate isomerase, mitochondrial creatine kinase U-type, creatine kinase ß-type and proteasome subunit α type-1 as proteins affected by exposure to acrylamide and 1-bromopropane, suggesting a common mechanism of neurotoxicity for soft electrophiles.


Assuntos
Acrilamida/toxicidade , Hipocampo/efeitos dos fármacos , Proteínas/metabolismo , Acrilamida/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Proteômica , Ratos , Ratos Wistar , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
14.
Int Arch Occup Environ Health ; 92(6): 873-881, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955093

RESUMO

OBJECTIVES: Urinary excretion of 2,5-hexanedione is currently used to estimate the exposure levels of hexane occurring to an individual during the previous work shift. However, because hexane exposures and urinary 2,5-hexanedione levels can vary considerably from day to day, and subchronic to chronic exposures to hexane are required to produce neuropathy, this biomarker may not accurately reflect the risk of an individual for developing hexane neuropathy. This investigation examines the potential of hexane-derived pyrrole adducts produced on globin and plasma proteins as markers for integrating cumulative exposures. Because the pyrrole markers incorporate bioactivation of hexane to 2,5-hexandione and the initial step of protein adduction involved in hexane-induced neuropathy, they potentially can serve as biomarkers of effect through reflecting pathogenetic events within the nervous system. Additionally, pyrrole formation is an irreversible reaction suggesting that hexane-derived protein pyrroles can be used to assess cumulative exposures to provide a better characterization of individual susceptibilities. METHODS: To examine the utility of the proposed markers, blood samples were obtained from eleven workers who used hexane for granulating metal powders in a slurry to produce metal machining die tools and four non-exposed volunteers. Globin and plasma were isolated, and the proteins were digested using pepsin, reacted with Ehrlich's reagent and the level of pyrrole adducts were determined by absorbance at 530 nm. To determine the dose-response curve and dynamic range of the assay, erythrocytes were incubated with a range of 2,5-hexanedione concentrations and the net absorbance at 530 nm of isolated globin was measured. RESULTS: Pyrrole was detected in both the globin and plasma samples of the workers exposed to hexane and the levels of pyrroles in plasma were positively correlated with the levels of pyrroles in globin for most of the workers. CONCLUSIONS: This investigation demonstrates that detectable levels of hexane-derived protein pyrrole adducts are produced on peripheral proteins following occupational exposures to hexane and supports the utility of measuring pyrroles for integrating cumulative exposures to hexane.


Assuntos
Globinas/metabolismo , Hexanos/metabolismo , Plasma/química , Pirróis/sangue , Biomarcadores/sangue , Globinas/química , Humanos , Exposição Ocupacional/efeitos adversos , Pirróis/metabolismo
15.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781642

RESUMO

As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO2 NPs, 25 and 115 nm, with neutral surface charge or with different surface functionalization, rendering them positively or negatively charged, in order to predict the effect of NPs in humans. We performed a zebrafish embryo toxicity test (ZFET) by exposing the embryos to SiO2 NPs starting from six hours post fertilization (hpf). Survival rate, hatching time, and gross morphological changes were assessed at 12, 24, 36, 48, 60, and 72 hpf. We evaluated the effect of NPs on angiogenesis by counting the number of sub-intestinal vessels between the second and seventh intersegmental vessels and gene expression analysis of vascular endothelial growth factor (VEGF) and VEGF receptors at 72 hpf. SiO2 NPs did not show any adverse effects on survival rate, hatching time, gross morphology, or physiological angiogenesis. We found that SiO2 NPs were trapped by the chorion up until to the hatching stage. After chemical removal of the chorion (dechorionation), positively surface-charged SiO2 NPs (25 nm) significantly reduced the survival rate of the fish compared to the control group. These results indicate that zebrafish chorion acts as a physical barrier against SiO2 NPs, and removing the chorions in ZFET might be necessary for evaluation of toxicity of NPs.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Testes de Toxicidade , Peixe-Zebra/embriologia , Animais , Córion/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/irrigação sanguínea , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Substâncias Protetoras/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Sobrevida , Suspensões , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
BMC Cancer ; 18(1): 317, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566670

RESUMO

BACKGROUND: C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. METHODS: We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. RESULTS: We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. CONCLUSIONS: Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information for further epigenetic studies of mice models of HCC. The present study particularly proposed novel DNA methylation-regulated pathways for Mst1r and Slpi, which may be applied not only to mouse HCC but also to human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Animais , Sítios de Ligação , Biomarcadores , Linhagem Celular Tumoral , Ilhas de CpG , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
18.
J Appl Toxicol ; 37(3): 331-338, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27452781

RESUMO

The pathophysiology of hypertension is complex and multifactorial, and includes exposure to various chemical substances. Several recent studies have documented the reproductive and neurological toxicities of 1-bromopropane (1-BP). Given that 1-BP increased reactive oxygen species in the brain of rats, we hypothesized that 1-BP also has cardiovascular toxicity through increased oxidative stress. To test this hypothesis, male F344 and Wistar Nagoya rats (n = 7-8 per group per test) were exposed to 0 or 1000 ppm of 1-BP via inhalation for 4 weeks (8 h per day, 7 days per week). The exposure to 1-BP increased systolic blood pressure. This effect was associated with a significant decrease in the reduced/oxidized glutathione ratio. A significant increase in nitrotyrosine levels, activation of the NADPH oxidase pathway, which was evidenced by upregulation of gp91phox, a NADPH oxidase subunit, and significant decreases in the expressions of antioxidant molecules such as Cu/Zn- and Mn-superoxide dismutase catalase, and nuclear factor erythroid 2-related factor 2, were observed in the aortas of Wistar Nagoya rats exposed to 1-BP. Our results indicate that subacute (4-week) inhalation exposure to 1-BP increases blood pressure and suggest that this cardiovascular toxic effect is due, at least in part, to increased oxidative stress mediated through activation of the NADPH oxidase pathway. Further study is needed to assess whether NADPH oxidase activation causes the increase in blood pressure in the rats exposed to 1-BP. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Poluentes Atmosféricos/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Endotélio Vascular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Bromados/toxicidade , Exposição por Inalação/análise , Masculino , NADPH Oxidases/genética , Ratos Endogâmicos F344 , Ratos Wistar
19.
Part Fibre Toxicol ; 13(1): 54, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737702

RESUMO

BACKGROUND: The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE-/-) mice, a model of human atherosclerosis. METHODS: HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE-/- mice were exposed to SWCNTs or DWCNTs (10 or 40 µg/mouse) once every other week for 10 weeks by pharyngeal aspiration. RESULTS: Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE-/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE-/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE-/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. CONCLUSION: The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.


Assuntos
Aterosclerose/induzido quimicamente , Adesão Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/citologia , Monócitos/citologia , Nanotubos de Carbono/toxicidade , Animais , Apolipoproteínas E/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química
20.
Int J Mol Sci ; 17(4): 576, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-27092499

RESUMO

Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1ß expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.


Assuntos
Corantes de Alimentos/efeitos adversos , Inflamação/etiologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Células CACO-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-8/imunologia , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/imunologia , Titânio/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA