Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemistry ; 29(59): e202301669, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37522387

RESUMO

Platinum complexes are ubiquitous in chemistry and largely used as catalysts or as precursors in drug chemistry, thus a deep knowledge of their electronic properties may help in planning new synthetic strategies or exploring new potential applications. Herein, the electronic structure of many octahedral platinum complexes is drastically revised especially when they feature electronegative elements such as halogens and chalcogens. The investigation revealed that in most cases the five d platinum orbitals are invariably full, thus the empty antibonding orbitals, usually localized on the metal, are mainly centered on the ligands, suggesting a questionable assignment of formal oxidation state IV. The analysis supports the occurrence of the inverted ligand field theory in all cases with the only exceptions of the Pt-F and Pt-O bonding. The trends for the molecular complexes are mirrored also by the density of states plots of extended structures featuring octahedral platinum moieties in association with chalcogens atoms. Finally, the oxidative addition of a Se-Cl linkage to a square platinum complex to achieve an octahedral moiety has been revised in the framework of the inverted ligand field.

2.
Inorg Chem ; 62(2): 694-705, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36602377

RESUMO

N,N'-Dialkylpiperazine-2,3-dithiones (R2pipdt) were recognized as a class of hexa-atomic cyclic dithiooxamide ligands with peculiar charge-transfer donor properties toward soft electron-acceptors such as noble metal cations and diiodine. The latter interaction is nowadays better described as halogen bonding. In the reaction with diiodine, R2pipdt unexpectedly provides the corresponding triiodide salts, differently from the other dithiooxamides, which instead typically achieve ligand·nI2 halogen-bonded adducts. In this paper, we report a combined experimental and theoretical study that allows elucidation of the nature of the cited products and the reasons behind the unpredictable behavior of these ligands. Specifically, low-temperature single-crystal X-ray diffraction measurements on a series of synthetically obtained R2pipdt (R = Me, iPr, Bz)/I3 salts, complemented by neutron diffraction experiments, were able to experimentally highlight the formation of [R2pipdtH]+ cations with a -S-H bond on the dithionic moiety. Differently, with R = Ph, a benzothiazolylium cation, resulting from an intramolecular condensation reaction of the ligand, is obtained. Based on density functional theory (DFT) calculations, a reasonable reaction mechanism where diiodine plays the fundamental role of promoting a halogen-bonding-mediated radical reaction has been proposed. In addition, the comparison of combined experimental and computational results with the corresponding reactions of N,N'-dialkylperhydrodiazepine-2,3-dithione (R2dazdt, a hepta-atomic cyclic dithiooxamide), which provide neutral halogen-bonded adducts, pointed out that the difference in the torsion angle of the free ligands represents the structural key factor in determining the different reactivities of the two systems.

3.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446665

RESUMO

Archival documents and artworks stored in libraries frequently undergo degradative processes promoted by the so-called "biodeteriogens" that inhabit these places. A renewed interest in plant-derived products has arisen in those research groups focusing on cultural heritage preservation and looking for new and safe disinfection techniques. In this view, essential oils (EOs) and their volatile organic constituents are very appealing thanks to their versatility of action. A literature survey of the scientific publications involving EOs and/or their major constituents related to the conservation of paper items of cultural heritage interest is presented here, aiming to reveal benefits and limitations of such peculiar plant-derived compounds.


Assuntos
Magnoliopsida , Óleos Voláteis , Óleos de Plantas
4.
J Org Chem ; 87(5): 2662-2667, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107278

RESUMO

The selective recognition of caffeine in water among structurally related xanthines and purine or pyrimidine bases was achieved by a simple tweezer-shaped receptor featuring sulfonate hydrosolubilizing groups. The remarkable affinity for caffeine, among the highest reported thus far in the literature and larger than that shown by adenosine receptors of all subtypes, stems from a synergistic combination of hydrogen bonding, CH-π, and π-stacking interactions.


Assuntos
Cafeína , Água , Ligação de Hidrogênio , Xantinas
5.
Inorg Chem ; 61(8): 3484-3492, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175757

RESUMO

Gold chemistry has experienced in the last decades exponential attention for a wide spectrum of chemical applications, but the +3 oxidation state, traditionally assigned to gold, remains somewhat questionable. Herein, we present a detailed analysis of the electronic structure of the pentanuclear bow tie Au/Fe carbonyl cluster [Au{η2-Fe2(CO)8}2]- together with its two one-electron reversible reductions. A new interpretation of the bonding pattern is provided with the help of inverted ligand field theory. The classical view of a central gold(III) interacting with two [Fe2(CO)8]2- units is replaced by Au(I), with a d10 gold configuration, with two interacting [Fe2(CO)8]- fragments. A d10 configuration for the gold center in the compound [Au{η2-Fe2(CO)8}2]- is confirmed by the LUMO orbital composition, which is mainly localized on the iron carbonyl fragments rather than on a d gold orbital, as expected for a d8 configuration. Upon one-electron stepwise reduction, the spectroelectrochemical measurements show a progressive red shift in the carbonyl stretching, in agreement with the increased population of the LUMO centered on the iron units. Such a trend is also confirmed by the X-ray structure of the direduced compound [Au{η1-Fe2(CO)8}{η2-Fe2(CO)6(µ-CO)2}]3-, featuring the cleavage of one Au-Fe bond.

6.
J Am Chem Soc ; 143(27): 10088-10098, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185506

RESUMO

The chemical functionalization of 2D exfoliated black phosphorus (2D BP) continues to attract great interest, although a satisfactory structural characterization of the functionalized material has seldom been achieved. Herein, we provide the first complete structural characterization of 2D BP functionalized with rare discrete Pd2 units, obtained through a mild decomposition of the organometallic dimeric precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in detail the morphology of the palladated nanosheets (Pd2/BP) and to unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In particular, XAS, backed up by DFT modeling, revealed the existence of unprecedented interlayer Pd-Pd units, sandwiched between stacked BP layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted an activity increase due to the presence of Pd2 units.

7.
Eur J Inorg Chem ; 2019(11-12): 1476-1494, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31007576

RESUMO

Phosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in materials science. The physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis. The aim of this review is to summarize the state of the art in this subject and to present our most recent results in the preparation, functionalization, and use of phosphorene and its decorated derivatives. We discuss several key points, which are currently under investigation: the synthesis, the characterization by theoretical calculations, the high pressure behavior of black phosphorus, as well as its decoration with nanoparticles and encapsulation in polymers. Finally, device fabrication and electrical transport measurements are overviewed on the basis of recent literature and the new results collected in our laboratories.

8.
Inorg Chem ; 56(6): 3512-3516, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28240887

RESUMO

The aromatic methylene blue cation (MB+) shows unprecedented ligand behavior in the X-ray structures of the trigonal-planar (TP) complexes MBMCl2 (M = CuI, AgI). The two isostructural compounds were exclusively synthesized by grinding together methylene blue chloride and MCl solids. Only in the case of AuCl did the technique lead to a different, yet isoformular, AuI derivative with separated MB+ and AuCl2- counterions and no direct N-Au linkage. While the density functional theory (DFT) molecular modeling failed in reproducing the isolated Cu and Ag complexes, the solid-state program CRYSTAL satisfactorily provided for Cu the correct TP building block associated with a highly compact π stacking of the MB+ ligands. In this respect, the dispersion interactions, evaluated with the DFT functional, provide to the system an extra energy, which likely supports the unprecedented metal coordination of the MB+ cation. The feature seems governed by subtle chemical factors, such as, for instance, the selected metal ion of the coinage triad. Thus, the electronically consistent AuI ion does not form the analogous TP building block because of a looser supramolecular arrangement. In conclusion, while a given crystalline design is generally fixed by the nature of the building block, a peculiarly efficient supramolecular packing may stabilize an otherwise unattainable metal complex.

9.
Inorg Chem ; 53(18): 9761-70, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25165891

RESUMO

The Co6C(CO)12(AuPPh3)4 carbide carbonyl cluster was obtained from the reaction of [Co6C(CO)15](2-) with Au(PPh3)Cl. This new species was investigated by variable-temperature (31)P NMR spectroscopy, X-ray crystallography, and density functional theory methods. Three different solvates were characterized in the solid state, namely, Co6C(CO)12(AuPPh3)4 (I), Co6C(CO)12(AuPPh3)4·THF (II), and Co6C(CO)12(AuPPh3)4·4THF (III), where THF = tetrahydrofuran. These are not merely different solvates of the same neutral cluster, but they contain three different isomers of Co6C(CO)12(AuPPh3)4. The three isomers I-III possess the same octahedral [Co6C(CO)12](4-) carbido-carbonyl core differently decorated by four [AuPPh3](+) fragments and showing a different Au(I)···Au(I) connectivity. Theoretical investigations suggest that the formation in the solid state of the three isomers during crystallization is governed by packing and van der Waals forces, as well as aurophilic and weak π-π and π-H interactions. In addition, the closely related cluster Co6C(CO)12(PPh3)(AuPPh3)2 was obtained from the reaction of [Co8C(CO)18](2-) with Au(PPh3)Cl, and two of its solvates were crystallographically characterized, namely, Co6C(CO)12(PPh3)(AuPPh3)2·toluene (IV) and Co6C(CO)12(PPh3)(AuPPh3)2·0.5toluene (V). A significant, even if minor, effect of the cocrystallized solvent molecules on the structure of the cluster was observed also in this case.

10.
RSC Adv ; 14(29): 21139-21150, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38966814

RESUMO

The water-soluble cage-like phosphine PTA (1,3,5-triaza-7-phosphaadamantane) and its phosphine oxide derivative [PTA(O)] (1,3,5-triaza-7-phosphaadamantane-7-oxide) were used to explore their reactivity towards two gallium(iii)-halide precursors, namely GaCl3 and GaI3, for the first time. By using various reaction conditions, a series of N-mono-protonated phosphine salts with [GaCl4]- or [I]- as counterions were obtained in all cases, while the formation of coordinated Ga-PTA and Ga-[PTA(O)] complexes was not observed. All compounds were characterized in solution using multinuclear NMR spectroscopy (1H, 13C{1H}, 31P{1H} and 71Ga) and in the solid state using FT-IR spectroscopy and X-ray crystal diffraction. The new Ga-phosphine salts resulted stable and highly soluble in aqueous solution at room temperature. Density functional theory (DFT) calculations were also performed to further rationalize the coordination features of PTA with Ga3+ metal ion, highlighting that the phosphorus-gallium bond is about twice weaker than the phosphorus-metal bond commonly established by PTA with transition metals such as gold. Furthermore, the mono-protonation of PTA (or [PTA(O)]) makes the formation of ionic gallium-PTA coordination complexes thermodynamically unstable, as confirmed experimentally by the formation of Ga-phosphine salts reported herein.

11.
Inorg Chem ; 52(18): 10559-65, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24004143

RESUMO

The Ni6C(CO)9(AuPPh3)4 bimetallic carbide carbonyl cluster was obtained from the reaction of [Ni9C(CO)17](2-) with Au(PPh3)Cl. It contains a rare carbon-centered (distorted) Ni6C octahedral core decorated by four Au(PPh3) fragments. These are µ3-bonded to four contiguous Ni3-triangular faces and display weak intramolecular Au···Au d(10)-d(10) interactions. The cluster has been characterized in the solid state on two different solvato crystals, i.e., Ni6C(CO)9(AuPPh3)4·THF and Ni6C(CO)9(AuPPh3)4·THF·0.5C6H14. The two solvates show some interesting differences concerning the weak Au···Au contacts. Density functional theory calculations have demonstrated that the presence of the two isomers is related to solid-state packing effects and not to the existence of two double minima in the potential energy surface. This, in turn, confirms that Au···Au d(10)-d(10) interactions are rather soft and thus influenced also by weak van der Waals forces because of the interaction of the cluster with the cocrystallized solvent molecules.

12.
Inorg Chem ; 52(8): 4635-47, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537366

RESUMO

This paper presents the synthesis and structural characterization of the unprecedented tris-phosphido-bridged compounds Pt3(µ-PBu(t)2)3X3 (X = Cl, Br, I), having only 42 valence electrons, while up to now analogous clusters typically have 44e(-). The new species were obtained by an apparent bielectronic oxidation of the 44e(-) monohalides Pt3(µ-PBu(t)2)3(CO)2X with the corresponding dihalogen X2. Their X-ray structures are close to the D3h symmetry, similarly to the 44e(-) analogues with three terminal carbonyl ligands. The products were also obtained by electrochemical oxidation of the same monohalides in the presence of the corresponding halide. In a detailed study on the formation of Pt3(µ-PBu(t)2)3I3, the redox potentials indicated that I2 can only perform the first monoelectronic oxidation but is unsuited for the second one. Accordingly, the 43e(-) intermediate [Pt3(µ-PBu(t)2)3(CO)2I](+) was ascertained to play a key role. Another piece of information is that, together with the fully oxidized product Pt3(µ-PBu(t)2)3I3, the transient 44e(-) species [Pt3(µ-PBu(t)2)3(CO)3](+) is formed in the early steps of the reaction. In order to extract detailed information on the formation pathway, involving both terminal ligand substitutions and electron transfer processes, a DFT investigation has been performed and all the possible intermediates have been defined together with their associated energy costs. The profile highlights many important aspects, such as the formation of an appropriate couple of 43e(-) intermediates having different sets of terminal coligands, and suitable redox potentials for the transfer of one electron. Optimizations of 45e(-) associative intermediates in the ligand substitution reactions indicate their possible involvement in the redox process with reduction of the overall energy cost. Finally, according to MO arguments, the unique stability of the 42e(-) phosphido-bridged Pt3 clusters can be attributed to the simultaneous presence of three terminal halides.

13.
Chemistry ; 18(36): 11238-50, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22847949

RESUMO

The dynamic behavior in solution of eight mono-hapto tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2)(H)(η(1)-P(4))]BF(4) ([1]BF(4)), trans-[Ru(dppe)(2)(H)(η(1)-P(4))]BF(4) ([2]BF(4)), [CpRu(PPh(3))(2)(η(1)-P(4))]PF(6) ([3]PF(6)), [CpOs(PPh(3))(2)(η(1)-P(4))]PF(6) ([4]PF(6)), [Cp*Ru(PPh(3))(2)(η(1)-P(4))]PF(6) ([5]PF(6)), [Cp*Ru(dppe)(η(1)-P(4))]PF(6) ([6]PF(6)), [Cp*Fe(dppe)(η(1)-P(4))]PF(6) ([7]PF(6)), [(triphos)Re(CO)(2)(η(1)-P(4))]OTf ([8]OTf), and of three bimetallic Ru(µ,η(1:2)-P(4))Pt species [{Ru(dppm)(2)(H)}(µ,η(1:2)-P(4)){Pt(PPh(3))(2)}]BF(4) ([1-Pt]BF(4)), [{Ru(dppe)(2)(H)}(µ,η(1:2)-P(4)){Pt(PPh(3))(2)}]BF(4) ([2-Pt]BF(4)), [{CpRu(PPh(3))(2))}(µ,η(1:2)-P(4)){Pt(PPh(3))(2)}]BF(4) ([3-Pt]BF(4)), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5)-C(5)H(5); Cp*=η(5)-C(5)Me(5) ] was studied by variable-temperature (VT) NMR and (31)P{(1)H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M-P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31)P NMR experiments showed that also the binuclear complex cations [1-Pt](+)-[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6), MAS, (31)P NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+), 2(+), 3(+), 4(+), 6(+), 8(+) in solution, as well as the X-ray structures of 2(+), 3(+), 5(+), 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.

14.
Methods Mol Biol ; 2536: 475-493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819622

RESUMO

Essential oils (EOs) and oleoresins are complex mixtures mainly made up of terpenes, synthesized by a wide variety of plants. Individual terpenes may show broad-spectrum activity against different plant pathogens, and their combination into EO and oleoresin mixtures enhances plant chemical defense. The interest in EOs has significantly increased due to the trend of using natural products as herbicides, insecticidal and antimicrobial agents. In addition, the use of plant mixtures is an emerging approach to face the problem of antimicrobial resistance in agriculture. This chapter reports guidelines about plant sample collection for the production of EOs and provides protocols to test their activity as antimicrobial agents against bacteria and fungi. It also describes a solvent-free method for the inclusion of EOs into ß-cyclodextrins. This type of formulate is prepared to turn liquid EOs into easily manageable water-soluble powders, and to control the release of volatile compounds, aiming to increase EOs' applications in agriculture.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Anti-Infecciosos/farmacologia , Bactérias , Fungos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Plantas/química , Terpenos/farmacologia
15.
Chemistry ; 17(17): 4821-9, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21404348

RESUMO

The structural features of a representative set of five complexes of octyl α- and ß-mannosides with some members of a new generation of chiral tripodal diaminopyrrolic receptors, namely, (R)-5 and (S)- and (R)-7, have been investigated in solution and in the solid state by a combined X-ray, NMR spectroscopy, and molecular modeling approach. In the solid state, the binding arms of the free receptors 7 delimit a cleft in which two solvent molecules are hydrogen bonded to the pyrrolic groups and to the benzenic scaffold. In a polar solvent (CD(3)CN), chemical shift and intermolecular NOE data, assisted by molecular modeling calculations, ascertained the binding modes of the interaction between the receptor and the glycoside for these complexes. Although a single binding mode was found to adequately describe the complex of the acyclic receptor 5 with the α-mannoside, for the complexes of the cyclic receptors 7 two different binding modes were required to simultaneously fit all the experimental data. In all cases, extensive binding through hydrogen bonding and CH-π interactions is responsible for the affinities measured in the same solvent. Furthermore, the binding modes closely account for the recognition preferences observed toward the anomeric glycosides and for the peculiar enantiodiscrimination properties exhibited by the chiral receptors.


Assuntos
Glicosídeos/química , Manosídeos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
16.
Chemistry ; 17(38): 10600-17, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21834105

RESUMO

Compounds based on the Mn-tda unit (tda=S(CH(2)COO)(2)(-2) ) and N co-ligands have been analyzed in terms of structural, spectroscopic, magnetic properties and DFT calculations. The precursors [Mn(tda)(H(2)O)](n) (1) and [Mn(tda)(H(2)O)(3)]·H(2)O (2) have been characterized by powder and X-ray diffraction, respectively. Their derivatives with bipyridyl-type ligands have formulas [Mn(tda)(bipy)](n) (3), [{Mn(N-N)}(2)(µ-H(2)O)(µ-tda)(2)](n) (N-N=4,4'-Me(2)bipy (4), 5,5'-Me(2)bipy, (5)) and [Mn(tda){(MeO)(2)bipy}·2H(2)O](n) (6). Depending on the presence/position of substituents at bipy, the supramolecular arrangement can affect the metal coordination type. While all the complexes consist of 1D coordination polymers, only 3 has a copper-acetate core with local trigonal prismatic metal coordination. The presence of substituents in 4-6, together with water co-ligands, reduces the supramolecular interactions and typical octahedral Mn(II) ions are observed. The unicity of 3 is also supported by magnetic studies and by DFT calculations, which confirm that the unusual Mn coordination is a consequence of extended noncovalent interactions (π-π stacking) between bipy ligands. Moreover, 3 is an example of broken paradigm for supramolecular chemistry. In fact, the desired stereochemical properties are achieved by using rigid metal building blocks, whereas in 3 the accumulation of weak noncovalent interactions controls the metal geometry. Other N co-ligands have also been reacted with 1 to give the compounds [Mn(tda)(phen)](2)·6H(2)O (7) (phen=1,10-phenanthroline), [Mn(tda)(terpy)](n) (8) (terpy=2,2':6,2''-terpyridine), [Mn(tda)(pyterpy)](n) (9) (pyterpy=4'-(4-pyridyl)-2,2':6,2''-terpyridine), [Mn(tda)(tpt)(H(2)O)]·2H(2)O (10) and [Mn(tda)(tpt)(H(2)O)](2)·2H(2)O (11) (tpt=2,4,6-tris(2-pyridyl)-1,3,5-triazine). Their identified mono-, bi- or polynuclear structures clearly indicate that hydrogen bonding is variously competitive with π-π stacking.

17.
J Org Chem ; 76(18): 7415-22, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21793521

RESUMO

An efficient synthesis of various protected syn-ß-sulfenyl amides is described. These are prepared from the corresponding enantiopure amino allylsilanes which are in turn obtained from naturally occurring amino acids. The key step for introduction of the sulfur substituent is a diastereoselective electrophilic sulfodesilylation which is carried out with phthalimidesulfenyl chloride. The resulting homochiral ß-phthalimidesulfenyl amines with an allylic sulforated stereogenic center are useful building blocks, as they represent a starting point for subsequent functional manipulations.

18.
Inorg Chem ; 50(24): 12553-61, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22087562

RESUMO

The new [Pt(5)(CO)(5){Cl(2)Sn(µ-OR)SnCl(2)}(3)](3-) (R = H, Me, Et, (i)Pr; 1-4) clusters contain trigonal bipyramidal (TBP) Pt(5)(CO)(5) cores, as certified by the X-ray structures of [Na(CH(3)CN)(5)][NBu(4)](2)[1]·2CH(3)CN and [PPh(4)](3)[4]·3CH(3)COCH(3). The TBP geometry, which is rare for group 10 metals, is supported by an unprecedented interpenetration with a nonbonded trigonal prism of tin atoms. By capping all the Pt(3) faces, the Sn(II) lone pairs account for both Sn-Pt and Pt-Pt bonding, as indicated by DFT and topological wave function studies. In the TBP interactions, the metals use their vacant s and p orbitals using the electrons provided by Sn atoms, hence mimicking the electronic picture of main group analogues, which obey the Wade's rule. Other metal TBP clusters with the same total electron count (TEC) of 72 are different because the skeletal bonding is largely contributed by d-d interactions (e.g., [Os(5)(CO)(14)(PR(3))(µ-H)(n)](n-2), n = 0, 1, 2). In 1-4, fully occupied d shells at the Pt(ax) atoms exert a residual nucleophilicity toward the adjacent main group Sn(II) ions permitting their hypervalency through unsual metal donation.

19.
Dalton Trans ; 50(33): 11610-11618, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34355729

RESUMO

Heterostructures of single- and few-layer black phosphorus (2D bP) functionalized with gold nanoparticles (Au NPs) have been recently reported in the literature, exploiting their intriguing properties and biocompatibility for catalytic, therapeutical and diagnostic applications. However, a deeper insight on the structural and electronic properties at the interface of the 2D bP/Au NP heterostructure is still lacking. In this work, 2D bP is functionalized with Au nanoparticles (NPs) through in situ deposition-precipitation heterogeneous reaction. The smallest realized Au NPs have a diameter around 10 nm as revealed by atomic-force and scanning electron microscopy, and are partially positively charged as revealed by X-ray Photoelectron Spectroscopy (XPS). XPS, UV-vis and Raman spectroscopy, supported by density functional theory (DFT) calculations, confirmed that while the structural and electronic properties of 2D bP are overall preserved, a soft-pairing between P atoms at the surface of 2D bP and Au atoms at the surface of Au NPs occurs, leading to a partial charge transfer at the 2D bP/Au interface, with a positive charge being localized on the Au atoms directly bonded to 2D bP. DFT calculations also predicted a band gap lowering, by 0.8 eV, for phosphorene functionalized with a tetranuclear Au cluster. Larger effects are expected as the Au cluster nuclearity (and coverage) increases.

20.
Dalton Trans ; 49(42): 15072-15080, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33107525

RESUMO

Functionalization is one of the most powerful tools in materials science for the development of new and innovative materials with tailored properties purposefully designed to enhance the overall stability of the system. This is particularly true for exfoliated black phosphorus, which suffers from easy decomposition by air and moisture, hampering its highly desirable applications, especially in electronics. The present work suggests an innovative approach to the functionalization process of this 2D-material based on the selective introduction of chalcogen atoms on the material surface through a reaction with suitable molecular precursors such as stibine chalcogenides (R3Sb(X), X = O or S; R = organyl group). These molecules may readily act as chalcogen-transfer agents and, upon releasing the chalcogen atom atop the bP surface, leave stable stibines (R3Sb) as byproducts, which may be easily removed from the functionalized bP surface. The work provides an overview of all the possible structural, electronic and energy aspects associated with the chalcogen-atom transfer from the stibine to phosphorus based compounds, exemplified by trialkyl phosphines and single layer exfoliated black phosphorus, i.e. phosphorene, Pn. In both cases the oxygen transfer is more exergonic than the sulfur transfer, with the associated free energy barrier for the phosphine process being higher. Although the sulfur transfer for the Pn is found to be endergonic (ca. +3.6 kcal mol-1), the process may surely occur at high temperature. The evolution of the band structure upon the chalcogen transfer has been depicted in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA