Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(26): e2100783, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34105238

RESUMO

Triarylamine-substituted bithiophene (BT-4D), terthiophene (TT-4D), and quarterthiophene (QT-4D) small molecules are synthesized and used as low-cost hole-transporting materials (HTMs) for perovskite solar cells (PSCs). The optoelectronic, electrochemical, and thermal properties of the compounds are investigated systematically. The BT-4D, TT-4D, and QT-4D compounds exhibit thermal decomposition temperature over 400 °C. The n-i-p configured perovskite solar cells (PSCs) fabricated with BT-4D as HTM show the maximum power conversion efficiency (PCE) of 19.34% owing to its better hole-extracting properties and film formation compared to TT-4D and QT-4D, which exhibit PCE of 17% and 16%, respectively. Importantly, PSCs using BT-4D demonstrate exceptional stability by retaining 98% of its initial PCE after 1186 h of continuous 1 sun illumination. The remarkable long-term stability and facile synthetic procedure of BT-4D show a great promise for efficient, stable, and low-cost HTMs for PSCs for commercial applications.

2.
Angew Chem Int Ed Engl ; 60(37): 20489-20497, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34223674

RESUMO

The emerging CsPbI3 perovskites are highly efficient and thermally stable materials for wide-band gap perovskite solar cells (PSCs), but the doped hole transport materials (HTMs) accelerate the undesirable phase transition of CsPbI3 in ambient. Herein, a dopant-free D-π-A type HTM named CI-TTIN-2F has been developed which overcomes this problem. The suitable optoelectronic properties and energy-level alignment endow CI-TTIN-2F with excellent charge collection properties. Moreover, CI-TTIN-2F provides multisite defect-healing effects on the defective sites of CsPbI3 surface. Inorganic CsPbI3 PSCs with CI-TTIN-2F HTM feature high efficiencies up to 15.9 %, along with 86 % efficiency retention after 1000 h under ambient conditions. Inorganic perovskite solar modules were also fabricated that exhibiting an efficiency of 11.0 % with a record area of 27 cm2 . This work confirms that using efficient dopant-free HTMs is an attractive strategy to stabilize inorganic PSCs for their future scale-up.

3.
Chemistry ; 26(48): 11039-11047, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32608525

RESUMO

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azomethine-EDOT central scaffold, resulting in a more pronounced redshift. The three new derivatives have been tested in combination with the state-of-the-art triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 in standard mesoporous PSCs. Remarkable power conversion efficiencies of 17.48 % and 18.30 % were measured for DTTX-1 and DTTX-2, respectively, close to that measured for the benchmarking HTM spiro-OMeTAD (18.92 %), under 100 mA cm-2 AM 1.5G solar illumination. PSCs with DTTX-3 reached a PCE value of 12.68 %, which is attributed to the poorer film formation in comparison to DTTX-1 and DTTX-2. These PCE values are in perfect agreement with the conductivity and hole mobility values determined for the new compounds and spiro-OMeTAD. Steady-state photoluminescence further confirmed the potential of DTTX-1 and DTTX-2 for hole-transport applications as an alternative to spiro-OMeTAD.

4.
J Phys Chem Lett ; 12(46): 11323-11329, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34780190

RESUMO

Phase control of low-dimensional metal-halide perovskites (LDPs) greatly affects their optoelectronic properties, and phase-pure LDPs are desirable to achieve efficient perovskite optoelectronic devices such as solar cells and light-emitting diodes. Herein, we introduce a method to obtain phase-pure LDP by using a neutral amine, cyclohexylmethyl amine (CHMA). The incorporation of CHMA into a formamidinium lead bromide (FAPbBr3) precursor solution leads to the protonation of the amine that allows the phase transition of 3D FAPbBr3 to phase-pure quasi-2D perovskite (n = 2). For comparison, cyclohexylmethylammonium bromide (CHMABr), which is a conventional form of ammonium halide salt with the same organic moiety to the amine, is used, which resulted in a 2D perovskite (n = 1). The perovskite films fabricated by the two different methodologies are characterized. This study paves the way for further research on the realization of phase-pure perovskites and their relevant optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 13(44): 52450-52460, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704729

RESUMO

Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.

6.
Chem Mater ; 33(15): 6059-6067, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34475636

RESUMO

To attain commercial viability, perovskite solar cells (PSCs) have to be reasonably priced, highly efficient, and stable for a long period of time. Although a new record of a certified power conversion efficiency (PCE) value over 25% was achieved, PSC performance is limited by the lack of hole-transporting materials (HTMs), which extract positive charges from the light-absorbing perovskite layer and carry them to the electrode. Here, we report spirobifluorene-based HTMs with finely tuned energy levels, high glass-transition temperature, and excellent charge mobility and conductivity enabled by molecularly engineered enamine arms. HTMs are synthesized using simple condensation chemistry, which does not require costly catalysts, inert reaction conditions, and time-consuming product purification procedures. Enamine-derived HTMs allow the fabrication of PSCs reaching a maximum PCE of 19.2% and stability comparable to spiro-OMeTAD. This work demonstrates that simple enamine condensation reactions could be used as a universal path to obtain HTMs for highly efficient and stable PSCs.

7.
Chem Sci ; 10(28): 6748-6769, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31391896

RESUMO

In the last decade, perovskite solar cells have been considered a promising and burgeoning technology for solar energy conversion with a power conversion efficiency currently exceeding 24%. However, although perovskite solar cells have achieved high power conversion efficiency, there are still several challenges limiting their industrial realization. The actual bottleneck for real uptake in the market still remains the cost-ineffective components and instability, to which doping-induced degradation of charge selective layers may contribute significantly. This article overviews the highest performance molecular and polymeric doped and dopant-free HTMs, showing how small changes in the molecular structure such as different atoms and different functional groups and changes in substitution positions or the length of the π-conjugated systems can affect photovoltaic performance and long-term stability of perovskite solar cells.

8.
Sci Rep ; 8(1): 15949, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374175

RESUMO

Two N-bridged pyrido[4,3-d]pyrimidine derivatives were synthesized toward realization of a self-assembled bis-rosette cage, in organic media. Starting from commercially available malononitrile dimer and dimethyl 5-aminoisophthalate, the target molecules were synthesized in 11 steps using a convergent approach. The final bridged compounds were characterized by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The hierarchical self-assembly of the nanocages into rosette nanotubes and nanobundles was established by electron microscopy and molecular modelling studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA