Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35686641

RESUMO

Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Epigenômica , Humanos , Regiões Promotoras Genéticas/genética
2.
Bioessays ; 45(10): e2300038, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37170707

RESUMO

The interactions between genetic and environmental risk factors contribute to the aetiology of complex human diseases. Genome-wide association studies (GWAS) have revealed that most of the genetic variants associated with complex diseases are located in the non-coding part of the genome, preferentially within enhancers. Enhancers are distal cis-regulatory elements composed of clusters of transcription factors binding sites that positively regulate the expression of their target genes. The generation of genome-wide maps for histone marks (e.g., H3K27ac), chromatin accessibility and transcription factor and coactivator (e.g., p300) binding profiles have enabled the identification of enhancers across many human cell types and tissues. Nonetheless, the functional and pathological consequences of the majority of disease-associated genetic variants located within enhancers seem to be rather minor under normal conditions, thus questioning their medical relevance. Here we propose that, due to the prevalence of enhancer redundancy, the pathological effects of many disease-associated non-coding genetic variants might be preferentially (or even only) manifested under environmental stress.


Assuntos
Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Elementos Facilitadores Genéticos/genética , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica
3.
Nucleic Acids Res ; 51(9): e54, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36999617

RESUMO

Understanding the pathological impact of non-coding genetic variation is a major challenge in medical genetics. Accumulating evidences indicate that a significant fraction of genetic alterations, including structural variants (SVs), can cause human disease by altering the function of non-coding regulatory elements, such as enhancers. In the case of SVs, described pathomechanisms include changes in enhancer dosage and long-range enhancer-gene communication. However, there is still a clear gap between the need to predict and interpret the medical impact of non-coding variants, and the existence of tools to properly perform these tasks. To reduce this gap, we have developed POSTRE (Prediction Of STRuctural variant Effects), a computational tool to predict the pathogenicity of SVs implicated in a broad range of human congenital disorders. By considering disease-relevant cellular contexts, POSTRE identifies SVs with either coding or long-range pathological consequences with high specificity and sensitivity. Furthermore, POSTRE not only identifies pathogenic SVs, but also predicts the disease-causative genes and the underlying pathological mechanism (e.g, gene deletion, enhancer disconnection, enhancer adoption, etc.). POSTRE is available at https://github.com/vicsanga/Postre.


Assuntos
Biologia Computacional , Doenças Genéticas Inatas , Mutação , Software , Humanos , Biologia Computacional/métodos , Doenças Genéticas Inatas/genética
4.
Proc Natl Acad Sci U S A ; 117(2): 1090-1096, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896583

RESUMO

In the tetrapod limb, the digits (fingers or toes) are the elements most subject to morphological diversification in response to functional adaptations. However, despite their functional importance, the mechanisms controlling digit morphology remain poorly understood. Here we have focused on understanding the special morphology of the thumb (digit 1), the acquisition of which was an important adaptation of the human hand. To this end, we have studied the limbs of the Hoxa13 mouse mutant that specifically fail to form digit 1. We show that, consistent with the role of Hoxa13 in Hoxd transcriptional regulation, the expression of Hoxd13 in Hoxa13 mutant limbs does not extend into the presumptive digit 1 territory, which is therefore devoid of distal Hox transcripts, a circumstance that can explain its agenesis. The loss of Hoxd13 expression, exclusively in digit 1 territory, correlates with increased Gli3 repressor activity, a Hoxd negative regulator, resulting from increased Gli3 transcription that, in turn, is due to the release from the negative modulation exerted by Hox13 paralogs on Gli3 regulatory sequences. Our results indicate that Hoxa13 acts hierarchically to initiate the formation of digit 1 by reducing Gli3 transcription and by enabling expansion of the 5'Hoxd second expression phase, thereby establishing anterior-posterior asymmetry in the handplate. Our work uncovers a mutual antagonism between Gli3 and Hox13 paralogs that has important implications for Hox and Gli3 gene regulation in the context of development and evolution.


Assuntos
Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Transcriptoma , Proteína Gli3 com Dedos de Zinco/genética
5.
Hum Mol Genet ; 27(23): 4117-4134, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452683

RESUMO

Pluripotent stem cells are invaluable resources to study development and disease, holding a great promise for regenerative medicine. Here we use human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from patients with Huntington's disease (HD-iPSCs) to shed light into the normal function of huntingtin (HTT) and its demise in disease. We find that HTT binds ATF7IP, a regulator of the histone H3 methyltransferase SETDB1. HTT inhibits the interaction of the ATF7IP-SETDB1 complex with other heterochromatin regulators and transcriptional repressors, maintaining low levels of H3K9 trimethylation (H3K9me3) in hESCs. Loss of HTT promotes global increased H3K9me3 levels and enrichment of H3K9me3 marks at distinct genes, including transcriptional regulators of neuronal differentiation. Although these genes are normally expressed at low amounts in hESCs, HTT knockdown (KD) reduces their induction during neural differentiation. Notably, mutant expanded polyglutamine repeats in HTT diminish its interaction with ATF7IP-SETDB1 complex and trigger H3K9me3 in HD-iPSCs. Conversely, KD of ATF7IP in HD-iPSCs reduces H3K9me3 alterations and ameliorates gene expression changes in their neural counterparts. Taken together, our results indicate ATF7IP as a potential target to correct aberrant H3K9me3 levels induced by mutant HTT.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Metiltransferases/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Heterocromatina/genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase , Humanos , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lentivirus/genética , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Proteínas Repressoras
7.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29438503

RESUMO

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos/genética , Neurogênese/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Animais , Sistemas CRISPR-Cas/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/genética
8.
Hum Mol Genet ; 26(4): 742-752, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007912

RESUMO

Genome-wide association studies (GWAS) have emerged as a powerful tool to uncover the genetic basis of human common diseases, which often show a complex, polygenic and multi-factorial aetiology. These studies have revealed that 70-90% of all single nucleotide polymorphisms (SNPs) associated with common complex diseases do not occur within genes (i.e. they are non-coding), making the discovery of disease-causative genetic variants and the elucidation of the underlying pathological mechanisms far from straightforward. Based on emerging evidences suggesting that disease-associated SNPs are frequently found within cell type-specific regulatory sequences, here we present GARLIC (GWAS-based Prediction Toolkit for Connecting Diseases and Cell Types), a user-friendly, multi-purpose software with an associated database and online viewer that, using global maps of cis-regulatory elements, can aetiologically connect human diseases with relevant cell types. Additionally, GARLIC can be used to retrieve potential disease-causative genetic variants overlapping regulatory sequences of interest. Overall, GARLIC can satisfy several important needs within the field of medical genetics, thus potentially assisting in the ultimate goal of uncovering the elusive and complex genetic basis of common human disorders.


Assuntos
Biologia Computacional/instrumentação , Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Estudo de Associação Genômica Ampla , Software , Humanos
9.
Hum Mol Genet ; 26(4): 829-842, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087736

RESUMO

Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation.


Assuntos
Cromossomos Humanos/genética , Fenda Labial/genética , Fissura Palatina/genética , Bases de Dados Genéticas , Loci Gênicos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Feminino , Humanos , Masculino , Camundongos
10.
Mol Syst Biol ; 14(6): e8214, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858282

RESUMO

The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A- (active) and B- (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin-binding complexes. Nonetheless, the structure-to-function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Eucariotos/genética , Genoma , Animais , Humanos , Conformação de Ácido Nucleico , Dobramento de Proteína , Transcrição Gênica
11.
Nature ; 470(7333): 279-83, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21160473

RESUMO

Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.


Assuntos
Cromatina/genética , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Acetilação , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA Helicases/metabolismo , Células-Tronco Embrionárias/citologia , Epigênese Genética/genética , Gastrulação/genética , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Lisina/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Metilação , Placa Neural/citologia , Neurulação/genética , Proteínas Nucleares/metabolismo , RNA/análise , RNA/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fatores de Transcrição de p300-CBP/metabolismo
12.
Chem Rec ; 16(6): 2561-2572, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27424485

RESUMO

Our interest in the development of transition-metal catalysis for the realisation of vicinal diamination reactions of alkenes started about a decade ago. A number of successful transformations in this area have been developed using palladium catalysis. As a challenging aspect of major importance, the palladium-catalysed coupling of alkyl-nitrogen bonds constitutes the second step in diaminations of alkenes. We here discuss the details that led us to consider high-oxidation-state palladium catalysis as a key feature in such C-N bond-forming reactions. This work discusses both our own contributions and the ones from colleagues and combines the discussion of catalytic reactions and stoichiometric control experiments. It demonstrates that reductive alkyl-nitrogen bond formation from palladium(IV) proceeds with a low activation barrier and through a linear transition state of nucleophilic displacement.

13.
Nature ; 463(7283): 958-62, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20130577

RESUMO

Heterozygous mutations in the gene encoding the CHD (chromodomain helicase DNA-binding domain) member CHD7, an ATP-dependent chromatin remodeller homologous to the Drosophila trithorax-group protein Kismet, result in a complex constellation of congenital anomalies called CHARGE syndrome, which is a sporadic, autosomal dominant disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. Although it was postulated 25 years ago that CHARGE syndrome results from the abnormal development of the neural crest, this hypothesis remained untested. Here we show that, in both humans and Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest (NC), a transient cell population that is ectodermal in origin but undergoes a major transcriptional reprogramming event to acquire a remarkably broad differentiation potential and ability to migrate throughout the body, giving rise to craniofacial bones and cartilages, the peripheral nervous system, pigmentation and cardiac structures. We demonstrate that CHD7 is essential for activation of the NC transcriptional circuitry, including Sox9, Twist and Slug. In Xenopus embryos, knockdown of Chd7 or overexpression of its catalytically inactive form recapitulates all major features of CHARGE syndrome. In human NC cells CHD7 associates with PBAF (polybromo- and BRG1-associated factor-containing complex) and both remodellers occupy a NC-specific distal SOX9 enhancer and a conserved genomic element located upstream of the TWIST1 gene. Consistently, during embryogenesis CHD7 and PBAF cooperate to promote NC gene expression and cell migration. Our work identifies an evolutionarily conserved role for CHD7 in orchestrating NC gene expression programs, provides insights into the synergistic control of distal elements by chromatin remodellers, illuminates the patho-embryology of CHARGE syndrome, and suggests a broader function for CHD7 in the regulation of cell motility.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Movimento Celular , Proteínas Cromossômicas não Histona/genética , DNA Helicases/química , DNA Helicases/deficiência , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Crista Neural/embriologia , Ligação Proteica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição da Família Snail , Síndrome , Fatores de Transcrição/genética , Transcrição Gênica , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Biol Chem ; 395(12): 1453-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205712

RESUMO

Common human pathologies have a complicated etiology involving both genetic and environmental risk factors. Moreover, the genetic basis of these disorders is also complex, with multiple and weak genetic variants contributing to disease susceptibility. In addition, most of these risk genetic variants occur outside genes, within the vast non-coding human genomic space. In this review I first illustrate how large-scale genomic studies aimed at mapping cis-regulatory elements in the human genome are facilitating the identification of disease-causative non-coding genetic variation. I then discuss some of the challenges that remain to be solved before the pathological consequences of non-coding genetic variation can be fully appreciated. Ultimately, revealing the genetics of human complex disease can be a critical step towards more personalized and effective diagnosis and treatments.


Assuntos
Variação Genética , Elementos Reguladores de Transcrição , Epigênese Genética , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
15.
Nat Commun ; 15(1): 3931, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729993

RESUMO

MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transcrição Gênica , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino
16.
iScience ; 27(2): 108898, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322992

RESUMO

Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.

17.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503727

RESUMO

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Assuntos
Vigilância Imunológica , Sequências Reguladoras de Ácido Nucleico , Divisão Celular , Linhagem Celular Tumoral , Cromatina
18.
J Clin Med ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610601

RESUMO

Objectives: To compare complications associated with percutaneous gastrostomies performed using PUSH and PULL techniques, whether endoscopic (PEG) or radiological (PRG), in a tertiary-level hospital. Methods: This was a prospective observational study. Adult patients who underwent percutaneous PULL or PUSH gastrostomy using PEG or PRG techniques at the Virgen del Rocio University Hospital and subsequently followed up in the Nutrition Unit between 2009-2020 were included. X2 tests or Fisher's test were used for the comparison of proportions when necessary. Univariate analysis was conducted to study risk factors for PRG-associated complications. Results: n = 423 (PULL = 181; PUSH = 242). The PULL technique was associated with a higher percentage of total complications (37.6% vs. 23.8%; p = 0.005), exudate (18.2% vs. 11.2%; p = 0.039), and irritation (3.3% vs. 0%; p = 0.006). In the total sample, there were 5 (1.1%) cases of peritonitis, 3 (0.7%) gastrocolic fistulas, and 1 (0.2%) death due to complications associated with gastrostomy. Gender, age, and different indications were not risk factors for a higher number of complications. The most common indications were neurological diseases (35.9%), head and neck cancer (29%), and amyotrophic lateral sclerosis (17.2%). Conclusions: The PULL technique was associated with more total complications than the PUSH technique, but both were shown to be safe techniques, as the majority of complications were minor.

19.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684889

RESUMO

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Assuntos
Adenilil Ciclases , Tecido Adiposo Marrom , Temperatura Baixa , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Tecido Adiposo Marrom/metabolismo , Animais , Camundongos , Masculino , Humanos , Termogênese/genética , Metabolismo Energético , AMP Cíclico/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA