RESUMO
BACKGROUND: In this study whether metabolic suppression can be used to preserve platelet (PLT) function during prolonged storage was investigated. STUDY DESIGN AND METHODS: Washed human PLTs were incubated without glucose and with antimycin A to block energy generation. Metabolic suppressed PLTs (MSPs) were stored for 72 hours at different temperatures to find the optimal storage temperature. Controls were incubated with 5 mmol per L glucose and stored at 22 and 4 degrees C. RESULTS: Following metabolic recovery with glucose, MSPs stored at 37, 22, and 4 degrees C showed an increase in basal P-selectin expression (PSE) reaching greater than 40 percent after about 2, 20, and 48 hours; a decrease in thrombin receptor-activating peptide SFLLRN (TRAP)-induced PSE inversely related to the increase in basal PSE; and a decrease in TRAP-induced aggregation reaching less than 30 percent after about 4, 24, and more than 72 hours. When compared with control suspensions, MSPs stored at 4 degrees C better preserved a low basal PSE and in addition showed a better adhesion to surface coated-von Willebrand factor and fibrinogen in a flow chamber. CONCLUSION: Metabolic suppression before storage at 4 degrees C contributes to better preservation of PLT function.