Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 37(42): 10052-10062, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28912161

RESUMO

Circadian rhythm disturbances are well established in neurological diseases. However, how these disruptions cause homeostatic imbalances remains poorly understood. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) is a major circadian clock transcriptional activator, and Bmal1 deficiency in male Bmal1nestin-/- mice induced marked astroglial activation without affecting the number of astrocytes in the brain and spinal cord. Bmal1 deletion caused blood-brain barrier (BBB) hyperpermeability with an age-dependent loss of pericyte coverage of blood vessels in the brain. Using Nestin-green fluorescent protein (GFP) transgenic mice, we determined that pericytes are Nestin-GFP+ in the adult brain. Bmal1 deletion caused Nestin-GFP+ pericyte dysfunction, including the downregulation of platelet-derived growth factor receptor ß (PDGFRß), a protein necessary for maintaining BBB integrity. Knockdown of Bmal1 downregulated PDGFRß transcription in the brain pericyte cell line. Thus, the circadian clock component Bmal1 maintains BBB integrity via regulating pericytes.SIGNIFICANCE STATEMENT Circadian rhythm disturbances may play a role in neurodegenerative disorders, such as Alzheimer's disease. Our results revealed that one of the circadian clock components maintains the integrity of the blood-brain barrier (BBB) by regulating vascular-embedded pericytes. These cells were recently identified as a vital component for the control of BBB permeability and cerebral blood flow. Our present study demonstrates the involvement of circadian clock component Bmal1 in BBB homeostasis and highlights the role of Bmal1 dysfunction in multiple neurological diseases.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Pericitos/metabolismo , Pericitos/patologia , Fatores de Transcrição ARNTL/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
2.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 997-1003, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28473295

RESUMO

The reaction mechanism of multicopper oxidase (MCO) to reduce dioxygen to water has not been fully understood yet in spite of extensive studies including on the intermediate I (peroxide intermediate) and intermediate II (native intermediate with an O-centered structure at the trinuclear copper center (TNC)). We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139, and Tyr496 located in the outer-sphere of TNC in CueO at the aim of studying whether they play a role as the fourth electron donor to dioxygen or not. Spectral properties and enzymatic activities of CueO were sparingly affected or not affected by the mutations at these putative electron donors. Of the targeted four amino acids Trp139 is in a d-π interaction distance with one of T3Cus and drives stepwise formation and release of water molecules by making two T3Cus non-equivalent. However, contribution of a radical species derived from Trp139 has not been observed in the formation and decay processes of the reaction intermediates. The present study strongly suggests that the amino acids located in the outer-sphere of TNC are not utilized as electron donor in the reduction of dioxygen to water by the three-domain MCO, CueO, differing from cytochrome oxidase and SLAC, a two-domain MCO, in which reaction participation of an uncoordinated Tyr residue has been proposed. SUMMARY: We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139 and Tyr496 located in the outer-coordination sphere of the trinuclear copper center in a three-domain multicopper oxidase, CueO to ascertain whether they function as an electron donor or not in the four-electron reduction of dioxygen. Characterizations of the mutants and reactions did not suggest participation of the targeted amino acids, indicating that CueO follows a different reaction mechanism from that of a two-domain multicopper oxidase, SLAC, in which reaction participation of an uncoordinated Tyr has been suggested.


Assuntos
Aminoácidos/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , Sítios de Ligação/fisiologia , Elétrons , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação/genética , Oxirredução
3.
Neurochem Res ; 41(1-2): 5-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25957749

RESUMO

We have shown marked promotion of both cluster growth and neuronal specification in pluripotent P19 cells with overexpression of solute carrier 38a1 (Slc38a1), which is responsible for membrane transport of glutamine. In this study, we evaluated pharmacological profiles of the green tea amino acid ingredient theanine, which is a good substrate for glutamine transporters, on proliferation and neuronal specification in neural progenitor cells from embryonic rat neocortex. Sustained exposure to theanine, but not glutamine, accelerated the growth of neurospheres composed of proliferating cells and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reducing activity at concentrations of 1-100 µM in undifferentiated progenitor cells. Such prior exposure to theanine promoted spontaneous and induced commitment to a neuronal lineage with concomitant deteriorated astroglial specification. Selective upregulation was seen in the expression of Slc38a1 in progenitor cells cultured with theanine. Similarly significant increases in cluster growth and MTT reducing activity were found in P19 cells cultured with theanine for 4 days. Luciferase activity was doubled in a manner sensitive to the deletion of promoter regions in P19 cells with a luciferase reporter plasmid of the Slc38a1 promoter after sustained exposure to theanine for 4 days. Overexpression of X-box binding protein-1 led to a marked increase in luciferase activity in P19 cells transfected with the Slc38a1 reporter plasmid. These results suggest that theanine accelerates cellular proliferation and subsequent neuronal specification through a mechanism relevant to upregulation of Slc38a1 gene in undifferentiated neural progenitor cells.


Assuntos
Sistema A de Transporte de Aminoácidos/genética , Diferenciação Celular/genética , Glutamatos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Regulação para Cima , Animais , Proliferação de Células/genética , Células Cultivadas , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar
4.
J Cell Physiol ; 230(10): 2510-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25802132

RESUMO

We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1 mM ATP for a period longer than 30 min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca(2+) chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPß and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPß and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPß but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPß signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Microglia/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Linhagem Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Osteoblastos , Transdução de Sinais/genética , Ativação Transcricional/fisiologia , Regulação para Cima
5.
J Pharmacol Sci ; 127(3): 292-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25837925

RESUMO

Posttraumatic stress disorder is a long-lasting psychiatric disease with the consequence of hippocampal atrophy in humans exposed to severe fatal stress. We demonstrated a positive correlation between the transient decline of 5-bromo-2'-deoxyuridine (BrdU) incorporation in the hippocampal dentate gyrus (DG) and long-lasting behavioral abnormalities in mice with traumatic stress. Here, we investigated pharmacological properties of theanine on the declined BrdU incorporation and abnormal behaviors in mice with traumatic stress. Prior daily oral administration of theanine at 50-500 mg/kg for 5 days significantly prevented the decline of BrdU incorporation, while theanine significantly prevented the decline in the DG even when administered for 5 days after stress. Consecutive daily administration of theanine significantly inhibited the prolonged immobility in mice with stress in forced swimming test seen 14 days later. Although traumatic stress significantly increased spontaneous locomotor activity over 30 min even when determined 14 days later, the increased total locomotion was significantly ameliorated following the administration of theanine at 50 mg/kg for 14 days after stress. These results suggest that theanine alleviates behavioral abnormalities together with prevention of the transient decline of BrdU incorporation in the hippocampal DG in adult mice with severe traumatic stress.


Assuntos
Comportamento Animal/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Giro Denteado/metabolismo , Glutamatos/administração & dosagem , Glutamatos/farmacologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Administração Oral , Animais , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos , Atividade Motora/efeitos dos fármacos , Índice de Gravidade de Doença , Transtornos de Estresse Pós-Traumáticos/complicações
6.
Inflamm Regen ; 39: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057688

RESUMO

BACKGROUND: Senescence increases the risks of inflammatory bowel diseases and colon cancer. Intestinal stem cells (ISCs) in crypts differentiate into epithelial cells and thereby maintain intestinal homeostasis. However, the influence of aging on the functions of ISCs is largely unknown. The mutation rate is highest in the small and large intestines. Numerous types of naturally occurring DNA damage are removed by the DNA damage response (DDR). This response induces DNA repair and apoptosis; therefore, its dysregulation leads to accumulation of damaged DNA and consequently cellular dysfunctions, including tumorigenesis. This study investigated whether aging affects the DDR in mouse ISCs. METHODS: Young (2-3-month-old) and old (> 19-month-old) Lgr5-EGFP-IRES-creERT2 mice were irradiated. The DDR in Lgr5-positive ISCs was compared between these mice by immunohistochemical analyses. RESULTS: Induction of DDR marker proteins (phosphorylated ATR and 53BP1), inflammatory factors (phosphorylated NF-κB and interleukin-6), and a mitochondrial biogenesis-associated gene (peroxisome proliferator-activated receptor-γ coactivator 1α) was lower in old ISCs than in young ISCs in vivo. CONCLUSION: The competence of the DDR in ISCs declines with age in vivo.

7.
Biochem Biophys Rep ; 5: 89-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955810

RESUMO

We have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2'-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells.

8.
Neurochem Int ; 74: 24-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768841

RESUMO

Runt-related transcription factor-2 (Runx2) is the master regulator of osteoblastogenesis with an ability to promote differentiation of mesenchymal stem cells into the osteoblastic lineage. We have previously shown constitutive and functional expression of Runx2 by astroglial cells. In this study, we investigated the possible expression of Runx2 by both murine microglia and microglial cell line BV-2 cells. Runx2 expression was seen in cultured microglia and BV-2 cells, while sustained exposure to 1mM ATP led to a significant but transient increase in mRNA and corresponding protein expression of Runx2 within 24 h. The increase in Runx2 expression was invariably prevented by several chemicals with antagonistic properties for P2X7 purinergic receptor, calmodulin and calcineurin in BV-2 cells, with a P2X7 receptor agonist more than quadrupling Runx2 expression. A significant increase in Runx2 expression was seen in osteoclastic cells, but not in osteoblastic or chondrocytic cells, when exposed to a high concentration of ATP. In BV2-cells with control siRNA, a significant decrease was found in the number of cells with at least one process within 3 h after the exposure to 1mM ATP, followed by an increase up to 24 h. However, Runx2 siRNA significantly deteriorated the property to induce delayed process extension during 6-24 h after exposure to ATP along with drastically decreased Runx2 protein levels. These results suggest that Runx2 is constitutively and functionally expressed by microglial cells with responsiveness to ATP for upregulation in the murine brain.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Microglia/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Primers do DNA , Feminino , Masculino , Camundongos , Microglia/efeitos dos fármacos , Gravidez , RNA Mensageiro/genética , Receptores Purinérgicos P2X7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA