Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol (Mosk) ; 52(2): 246-256, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29695693

RESUMO

The effects of chronic 5-HT1A receptor activation on the behavior, functional activity of 5-HT1A receptors, and expression of key genes of the brain 5-HT system were studied in mice of the catalepsy-prone CBA strain and the catalepsy-resistant C57BL/6 strain. Chronic treatment with 8-Hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT) (1.0 mg/kg i.p., 14 days) led to a significant decrease in the hypothermic response to acute administration of 8-OH-DPAT in CBA and C57BL/6 mice, which indicates the desensiti-zation of 5-HT1A receptors in both strains. Pretreatment with the 5-HT7 receptor agonist SB 269970 did not affect the hypothermic response to the acute administration of 8-OH-DPAT, which suggests an independent functional response of 5-HT1A receptors. The treatment did not induce any changes in the behavior in the open field paradigm in CBA mice, but significantly increased the total path, the time spent in the center, and the number of rearings in C57BL/6 mice, which indicates the enhancement of locomotor and exploratory activity in C57BL/6 mice. The chronic activation of 5-HT1A receptor downregulated 5-HT1A gene expression, as well as the expression of the gene that encodes tryptophan hydroxylase 2, a key enzyme of 5-HT biosynthesis, in the midbrain and the expression of the gene that encodes the 5-HT2A receptor in the frontal cortex of CBA, but not C57BL/6 mice. The obtained data provide a new evidence on the receptor-gene cross talk in the brain 5-HT system that may underlie the loss of pharmacological efficacy of 5-HT1A receptor agonists. In turn, the loss of the behavioral response and compensatory alterations in key genes of the brain 5-HT system in CBA mice suggests that catalepsy-prone and -resistant genotypes demonstrate different sensibility to the effects of drugs.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Catalepsia , Predisposição Genética para Doença , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Catalepsia/induzido quimicamente , Catalepsia/genética , Catalepsia/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Camundongos Mutantes , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo
2.
Biochemistry (Mosc) ; 82(3): 308-317, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28320272

RESUMO

Neurotrophic factors play a key role in development, differentiation, synaptogenesis, and survival of neurons in the brain as well as in the process of their adaptation to external influences. The serotonergic (5-HT) system is another major factor in the development and neuroplasticity of the brain. In the present review, the results of our own research as well as data provided in the corresponding literature on the interaction of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with the 5-HT-system of the brain are considered. Attention is given to comparison of BDNF and GDNF, the latter belonging to a different family of neurotrophic factors and being mainly considered as a dopaminergic system controller. Data cited in this review show that: (i) BDNF and GDNF interact with the 5-HT-system of the brain through feedback mechanisms engaged in autoregulation of the complex involving 5-HT-system and neurotrophic factors; (ii) GDNF, as well as BDNF, stimulates the growth of 5-HT neurons and affects the expression of key genes of the brain 5-HT-system - those coding tryptophan hydroxylase-2 and 5-HT1A and 5-HT2A receptors. In turn, 5-HT affects the expression of genes that control BDNF and GDNF in brain structures; (iii) the difference between BDNF and GDNF is manifested in different levels and relative distribution of expression of these factors in brain structures (BDNF expression is highest in hippocampus and cortex, GDNF expression in the striatum), in varying reaction of 5-HT2A receptors on BDNF and GDNF administration, and in different effects on certain types of behavior.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Serotonina/metabolismo , Animais , Humanos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo
3.
Mol Biol (Mosk) ; 51(4): 647-655, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28900083

RESUMO

Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.


Assuntos
Alcoolismo/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Depressivo/genética , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Receptor trkB/genética , Alcoolismo/complicações , Alcoolismo/metabolismo , Alcoolismo/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo/complicações , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Etanol/toxicidade , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
4.
Mol Biol (Mosk) ; 50(5): 814-820, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27830683

RESUMO

The programmed cell death (or apoptosis) plays an important role both in developing and mature brains. Multiple data indicate the involvement of processes of apoptosis in mechanisms of different psychopathologies. At the same time, nothing is known about the role of apoptosis in the regulation of genetically defined aggression. In the present work, the expression of the genes that encode main pro- and antiapoptotic BAX and BCL-XL proteins, as well as caspase 3 (the main effector of apoptosis), in different brain structures of rats that were selected on a high aggression towards human (or its absence) was studied. A significant increase in the expression of the gene encoding caspase 3 was detected in the hypothalamus. This was accompanied by a significant decrease in the expression of proapoptotic Bax gene in the hippocampus and increase in mRNA level of antiapoptotic Bcl-xl gene in the raphe nuclei area of midbrain in highly aggressive rats. An increase in the ratio Bcl-xl: Bax was found in the midbrain and amygdala; a trend towards an increase in the ratio was also found in hippocampus of aggressive animals compared to tame animals. Thus, we demonstrated that genetically defined fear-induced aggression is associated with significant changes in the genetic control of apoptosis in the brain. It is assumed that an increase in the Bcl-xl gene expression (accompanied by a decrease in the Bax gene expression) can indicate an increase in the threshold of neuronal apoptosis in highly aggressive rats.


Assuntos
Agressão , Proteínas Reguladoras de Apoptose/biossíntese , Apoptose , Encéfalo/metabolismo , Medo , Proteínas do Tecido Nervoso/biossíntese , Animais , Proteínas Reguladoras de Apoptose/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Transgênicos
5.
Mol Biol (Mosk) ; 50(2): 302-10, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27239851

RESUMO

Tryptophan hydroxylase 2 (Tph-2) is the key enzyme in serotonin biosynthesis. Serotonin is one of the main neurotransmitters involved in the regulation of various physiological functions and behavior patterns. The influence of chronic ethanol consumption on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes was studied in the brain structures of B6-1473C (C/C) and B6-1473G (G/G) mice that had been obtained on the base of the C57BL/6 strain. The strains differed in the genotype for the C1473G single nucleotide polymorphism in the Tph-2 gene and in Tph-2 enzyme activity. It was found that chronic alcohol treatment led to a significant increase in the expression of the Bdnf gene in the midbrain of B6-1473G mice, but not in B6-1473С. Chronic alcohol treatment considerably decreased the expression of the ultimate brain apoptosis effector, caspase 3, in the frontal cortex, but increased it in the hippocampus of B6-1473G mice. At the same time, chronic ethanol administration reduced the level of the antiapoptotic Bcl-xL mRNA in the midbrain of B6-1473C mice. Thus, the C1473G polymorphism in the Tph-2 gene considerably influenced the changes in the expression patterns of genes involved in the regulation of neurogenesis and neural apoptosis induced by chronic ethanol treatment.


Assuntos
Alcoolismo/genética , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Caspase 3/biossíntese , Triptofano Hidroxilase/genética , Proteína X Associada a bcl-2/biossíntese , Proteína bcl-X/biossíntese , Alcoolismo/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Caspase 3/genética , Etanol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Serotonina/biossíntese , Triptofano Hidroxilase/biossíntese , Proteína X Associada a bcl-2/genética , Proteína bcl-X/genética
6.
J Neurosci Res ; 93(9): 1399-404, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25944479

RESUMO

UNLABELLED: Mice were exposed to 1 month of space flight on the Russian biosatellite BION-M1 to determine its effect on the expression of genes involved in the maintenance of the mouse brain dopamine system. The current article focuses on the genes encoding glial cell line-derived neurotrophic factor (GDNF) and cerebral dopamine neurotrophic factor (CDNF). Space flight reduced expression of the GDNF gene in the striatum and hypothalamus but increased it in the frontal cortex and raphe nuclei area. At the same time, actual space flight reduced expression of the gene encoding CDNF in the substantia nigra but increased it in the raphe nuclei area. To separate the effects of space flight from environmental stress contribution, we analyzed expression of the investigated genes in mice housed for 1 month on Earth in the same shuttle cabins that were used for space flight and in mice of the vivarium control group. Shuttle cabin housing failed to alter the expression of the GDNF and CDNF genes in the brain structures investigated. Thus, actual long-term space flight produced dysregulation in genetic control of GDNF and CDNF genes. These changes may be related to downregulation of the dopamine system after space flight, which we have shown earlier. © 2015 Wiley Periodicals, Inc. SIGNIFICANCE: Our results provide the first evidence of microgravity effects on expression of the GDNF and CDNF neurotrophic factor genes. A considerable decrease in mRNA level of GDNF and CDNF in the nigrostriatal dopamine system was found. Because both GDNF and CDNF play a significant role in maintenance and survival of brain dopaminergic neurons, we can assume that this dysregulation in genetic control of GDNF and CDNF genes in substantia nigra could be among the reasons for the deleterious effects of space flight on the dopamine system.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores de Crescimento Neural/metabolismo , Ausência de Peso , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , RNA Mensageiro/metabolismo , Voo Espacial , Fatores de Tempo
7.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 398-406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027123

RESUMO

Serotonin 5-HT7 receptors (5-HT7R) are attracting increasing attention as important participants in the mechanisms of Alzheimer's disease and as a possible target for the treatment of various tau pathologies. In this study, we investigated the effects of amisulpride (5-HT7R inverse agonist) in C57BL/6J mice with experimentally induced expression of the gene encoding the aggregation-prone human Tau[R406W] protein in the prefrontal cortex. In these animals we examined short-term memory and the expression of genes involved in the development of tauopathy (Htr7 and Cdk5), as well as biomarkers of neurodegenerative processes - the Bdnf gene and its receptors TrkB (the Ntrk2 gene) and p75NTR (the Ngfr gene). In a short-term memory test, there was no difference in the discrimination index between mice treated with AAV-Tau[R406W] and mice treated with AAV-EGFP. Amisulpride did not affect this parameter. Administration of AAV-Tau[R406W] resulted in increased expression of the Htr7, Htr1a, and Cdk5 genes in the prefrontal cortex compared to AAV-EGFP animals. At the same time, amisulpride at the dose of 10 mg/kg in animals from the AAV-Tau[R406W] group caused a decrease in the Htr7, Htr1a genes mRNA levels compared to animals from the AAV-Tau[R406W] group treated with saline. A decrease in the expression of the Bdnf and Ntrk2 genes in the prefrontal cortex was revealed after administration of AAV-Tau[R406W]. Moreover, amisulpride at various doses (3 and 10 mg/kg) caused the same decrease in the transcription of these genes in mice without tauopathy. It is also interesting that in mice of the AAV-EGFP group, administration of amisulpride at the dose of 10 mg/kg increased the Ngfr gene mRNA level. The data obtained allow us to propose the use of amisulpride in restoring normal tau protein function. However, it should be noted that prolonged administration may result in adverse effects such as an increase in Ngfr expression and a decrease in Bdnf and Ntrk2 expression, which is probably indicative of an increase in neurodegenerative processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA