Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338474

RESUMO

Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae, and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic content (TPC) was determined, and six microtiter plate assays were applied after extraction and fractionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyrylcholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia, the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer chromatography-multi-imaging-effect-directed analysis, exploiting nine different planar assays. Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase, acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry. The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate some of their ethnomedicinal uses.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Antioxidantes/química , Butirilcolinesterase , Verduras , Cromatografia em Camada Fina , Acetilcolinesterase , Monofenol Mono-Oxigenase , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/análise
2.
Int J Environ Health Res ; 34(2): 674-686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36739545

RESUMO

The EtOH extracts of the leaves of two new cultivars (Uysal-SFU and Turgut-SFT) of Salvia fruticosa Mill. was tested against acetylcholinesterase (IC50: 30.62 ± 3.27 and 32.97 ± 2.33 µg/mL for SFU and SFT, respectively) and butyrylcholinesterase (IC50: 69.91 ± 1.08 µg/mL and 86.55 ± 1.26 µg/mL), respectively, relevant to Alzheimer's disease. The essential oils showed a stumpy inhibition against AChE and no inhibition against BChE. DPPH radical scavenging activity of the extracts (86.70 ± 0.17% and 86.14 ± 1.13% for SFU and SFT, respectively) was stronger than that of quercetin (85.51 ± 0.17%): Their (1.24 ± 0.05 and 1.04 ± 0.16 for SFU and SFT, respectively) ferric-reducing antioxidant power were close to that of the reference (e.g. quercetin, 1.42 ± 0.14). Molecular docking simulations were performed on their major monoterpenes. Our findings revealed that the leaf EtOH extracts of two cultivars are promising inhibitors of both AChE and BChE.


Assuntos
Óleos Voláteis , Salvia , Butirilcolinesterase , Antioxidantes/farmacologia , Acetilcolinesterase , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Quercetina , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia
3.
Clin Infect Dis ; 72(4): 652-660, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32649738

RESUMO

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has spread worldwide and continues to threaten peoples' health as well as put pressure on the accessibility of medical systems. Early prediction of survival of hospitalized patients will help in the clinical management of COVID-19, but a prediction model that is reliable and valid is still lacking. METHODS: We retrospectively enrolled 628 confirmed cases of COVID-19 using positive RT-PCR tests for SARS-CoV-2 in Tongji Hospital, Wuhan, China. These patients were randomly grouped into a training (60%) and a validation (40%) cohort. In the training cohort, LASSO regression analysis and multivariate Cox regression analysis were utilized to identify prognostic factors for in-hospital survival of patients with COVID-19. A nomogram based on the 3 variables was built for clinical use. AUCs, concordance indexes (C-index), and calibration curves were used to evaluate the efficiency of the nomogram in both training and validation cohorts. RESULTS: Hypertension, higher neutrophil-to-lymphocyte ratio, and increased NT-proBNP values were found to be significantly associated with poorer prognosis in hospitalized patients with COVID-19. The 3 predictors were further used to build a prediction nomogram. The C-indexes of the nomogram in the training and validation cohorts were 0.901 and 0.892, respectively. The AUC in the training cohort was 0.922 for 14-day and 0.919 for 21-day probability of in-hospital survival, while in the validation cohort this was 0.922 and 0.881, respectively. Moreover, the calibration curve for 14- and 21-day survival also showed high coherence between the predicted and actual probability of survival. CONCLUSIONS: We built a predictive model and constructed a nomogram for predicting in-hospital survival of patients with COVID-19. This model has good performance and might be utilized clinically in management of COVID-19.


Assuntos
COVID-19 , Nomogramas , China/epidemiologia , Humanos , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
4.
Parasitology ; 148(6): 672-684, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33536098

RESUMO

Amoebiasis has emerged as a major health problem worldwide. It is endemic in the present scenario is different and sub-tropical regions especially in Asia, Latin America and also in Africa. Causative of amoebiasis is a protozoan known as Entamoeba histolytica. We screened all the databases such as PubMed, Science Direct, Medline and Google Scholar by using the keywords 'anti-Entamoeba histolytica activity of medicinal plants, anti-Entamoeba histolytica activity of herbal drugs, the anti-amoebic activity of natural drugs'. In the present study, we found 7861 articles, where all articles were screened for bias analysis and included 32 full-matching articles in total reporting the use of medicinal plants as a remedy for amoebiasis. Through these articles, we found 42 herbs having anti-amoebic activity. In bias analysis, we also found four articles under high bias risk. In our study, seven medicinal plants were concluded to possess the most potent anti-amoebic activity based on their IC50 value, which was less than 1 µg mL−1. On bias analysis, we found four articles with high bias risk, hence these studies can be repeated for better results.


Assuntos
Antiprotozoários/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Antiprotozoários/classificação , Antiprotozoários/isolamento & purificação , Concentração Inibidora 50 , Preparações de Plantas/classificação , Preparações de Plantas/isolamento & purificação
5.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916300

RESUMO

Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer's disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Inibidores da Colinesterase/isolamento & purificação , Furanos/química , Furanos/farmacologia , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Quinolinas/química , Quinolinas/farmacologia , Espirostanos/química , Espirostanos/farmacologia , Relação Estrutura-Atividade
6.
Compr Rev Food Sci Food Saf ; 19(6): 3219-3240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337047

RESUMO

Nowadays due to the concern with the environmental impact of analytical techniques and in order to reduce the ecological footprint there is a tendency to use more efficient and faster procedures that use a smaller amount of organic solvents. Polyphenols have been widely studied in plant-based matrices due to their wide and potent biological properties; however there are no standardized procedures both for sample preparation and analysis of these compounds. The second of a two-part review will carry out a critical review of the extraction procedures and analytical methods applied to polyphenols and their selection criteria over a wide range of factors in relation to commerce-associated, environmental, and economic factors. It is foreseen that in the future the analysis of polyphenols in plant-based matrices includes the use of techniques that allow the simultaneous determination of different subclasses of polyphenols using fast, sophisticated, and automated techniques that allow the minimal consumption of solvents.


Assuntos
Manipulação de Alimentos , Polifenóis/análise , Compostos Fitoquímicos , Polifenóis/química
7.
Pharmacol Res ; 141: 466-480, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639373

RESUMO

The Hedgehog pathway is essential for embryonic development but also for tissue and organ homeostasis in adult organisms. Activation of this pathway leads to the expression of target genes involved in proliferation, angiogenesis and stem cell self-renewal. Moreover, abnormal persistence of Hedgehog signaling is directly involved in a wide range of human cancers. Development of novel strategies targeting the Hedgehog pathway has become a subject of increased interest in anticancer therapy. These data are sustained by pre-clinical studies demonstrating that Hedgehog pathway inhibitors could represent an effective strategy against a heterogeneous panel of malignancies. Limited activity in other tumor types could be explained by the existence of crosstalk between the Hedgehog pathway and other signaling pathways that can compensate for its function. This review describes the Hedgehog pathway in detail, with its physiological roles during embryogenesis and adult tissues, and summarizing the preclinical evidence on its inhibition, the crosstalk between Hedgehog and other cancer-related pathways and finally the potential therapeutic effects of emerging compounds.


Assuntos
Antineoplásicos/farmacologia , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Notch/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Bioorg Chem ; 92: 103304, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561108

RESUMO

In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 µM; EeAChE, no inhibition at 100 µM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 µM; EeAChE, IC50 = 0.11 µM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 µM; EeAChE, no inhibition at 100 µM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 µM; EeAChE, 38.9% inhibition at 100 µM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer's disease treatment.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Piridazinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Humanos , Modelos Moleculares , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
9.
Bioorg Chem ; 84: 355-362, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530106

RESUMO

Coumarins of synthetic or natural origins are an important chemical class exerting diverse pharmacological activities. In the present study, 26 novel O-alkylcoumarin derivatives were synthesized and have been tested at 100 µM for their in vitro inhibitory potential against acetylcholinesterase (AChE) and butyrlcholinesterase (BChE) targets which are the key enzymes playing role in the pathogenesis of Alzheimer's disease. Among the tested coumarins, none of them could inhibit AChE, whereas 12 of them exerted a marked and selective inhibition against BChE as compared to the reference (galanthamine, IC50 = 46.58 ±â€¯0.91 µM). In fact, 10 of the active coumarins showed higher inhibition (IC50 = 7.01 ±â€¯0.28 µM - 43.31 ±â€¯3.63 µM) than that of galanthamine. The most active ones were revealed to be 7-styryloxycoumarin (IC50 = 7.01 ±â€¯0.28 µM) and 7-isopentenyloxy-4-methylcoumarin (IC50 = 8.18 ±â€¯0.74 µM). In addition to the in vitro tests, MetaCore/MetaDrug binary QSAR models and docking simulations were applied to evaluate the active compounds by ligand-based and target-driven approaches. The predicted pharmacokinetic profiles of the compounds suggested that the compounds reveal lipophilic character and permeate blood brain barrier (BBB) and the ADME models predict higher human serum protein binding percentages (>50%) for the compounds. The calculated docking scores indicated that the coumarins showing remarkable BChE inhibition possessed favorable free binding energies in interacting with the ligand-binding domain of the target. Therefore, our results disclose that O-alkylcoumarins are promising selective inhibitors of cholinesterase enzymes, particularly BChE in our case, which definitely deserve further studies.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Cumarínicos/química , Acetilcolinesterase/metabolismo , Sítios de Ligação , Barreira Hematoencefálica , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Cumarínicos/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
10.
Vascular ; 27(3): 233-241, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30305010

RESUMO

OBJECTIVE: Buerger's disease is one of the worst diseases causing peripheral artery occlusions (especially lower extremity) with increased morbidity and mortality. Endovascular treatment of the diseased arteries gains preference over bypass surgery nowadays. Here, we aimed to present the clinical outcomes of 16 consecutive Buerger's disease patients underwent extended endovascular recanalization which is a new technique to restore direct blood flow to at least one foot artery, with the performance of angioplasty for each tibial and foot artery obstructions. METHODS: A total of 16 consecutive patients with confirmed diagnosis of Buerger's disease that percutaneously treated in our center between February 2014 and March 2018 were included in the study. The mean age of the patients was 44.25 ± 4.28 ranging from 36 to 50 years. After physical examination and complementary diagnostic tests, performance of extended angioplasty for occluded arteries was intended to restore direct blood flow to at least one of the blow-the-knee arteries. RESULTS: A successful extended endovascular treatment was performed in 20 of 22 limbs, achieving a technical success of 91%. All patients were successfully discharged without any complication. Mean follow-up duration was 21.43 ± 7.08 months. Reintervention was performed in one patient and minor amputation was needed in one of the failed limbs. Limb salvage rate was 100%. A significant difference was observed based on Rutherford classification, ankle brachial index, direct blood flow to foot, presence of ulcer and rest pain when compared before and after the intervention. CONCLUSION: We showed successful extended endovascular recanalization of Buerger's disease patients with a high technical success rate and sustained clinical improvement. Extended endovascular recanalization could be a therapeutic option in Buerger's disease patients, since they are not good candidates for surgery.


Assuntos
Angioplastia , Pé/irrigação sanguínea , Tromboangiite Obliterante/terapia , Adulto , Angiografia , Angioplastia/efeitos adversos , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Estudos Retrospectivos , Tromboangiite Obliterante/diagnóstico por imagem , Tromboangiite Obliterante/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular
11.
Chem Biodivers ; 16(9): e1900333, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365785

RESUMO

In the current study, the ethanol extracts of flower, stem, and root parts of two endemic Turkish species, e. g., Haplophyllum sahinii O. Tugay & D. Ulukus and H. vulcanicum Boiss. & Heldr., were screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) associated with Alzheimer's disease as well as tyrosinase (TYR) linked to Parkinson's disease using ELISA microplate assay at 200 µg/mL. Among the extracts, the highest inhibition was caused by the stem extract of H. sahinii against BChE (IC50 =64.93±1.38 µg/mL). Consistently, all of the extracts were found to exert a selective inhibition towards BChE to some extent. It was only the root extract of H. vulcanicum that could inhibit AChE at low level (IC50 =203.18±5.33 µg/mL). None of the extracts displayed an inhibition over 50 % against TYR. Metabolite profiling of the extracts was achieved by a highly hyphenated liquid chromatographic mass spectrometric technique (HPLC-DAD-ESI-Q-TOF-MS/MS), which revealed the presence of furoquinoline (ß-fagarine, γ-fagarine) and amide (tubasenicine, tubacetine) alkaloids; furano- (rutamarin), pyrano- (xanthyletine), and geranyloxy coumarins; phenylpropanoid (secoisolariciresinol), arylnaphthalene (mono-O-acetyldiphyllin apioside), and dibenzylbutyrolactone (kusunokinin, haplomyrfolin) lignans. Several important differences were observed between the extracts analyzed. ß-Fagarine was the major alkaloid in H. vulcanicum, whereas γ-fagarine was present only in the roots of both Haplophyllum species; moreover, secoisolariciresinol and secoisolariciresinol dimethyl ether were the main lignans in the stems and flowers. This is the first study identifying ChE and TYR inhibitory effect and metabolic profiles of H. vulcanicum and H. sahinii.


Assuntos
Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Quinolinas/farmacologia , Rutaceae/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Cumarínicos/química , Cumarínicos/metabolismo , Humanos , Lignanas/química , Lignanas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Rutaceae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Turquia
12.
Chem Biodivers ; 16(5): e1900017, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30891904

RESUMO

Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl- and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50 =141.60±3.39 µm) and hyuganin C (IC50 =38.86±1.69 µm) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50 =46.58±0.91 µm) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.


Assuntos
Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Cumarínicos/química , Floroglucinol/análogos & derivados , Terpenos/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Apiaceae/química , Sítios de Ligação , Butirilcolinesterase/química , Domínio Catalítico , Cumarínicos/isolamento & purificação , Simulação de Acoplamento Molecular , Floroglucinol/química , Extratos Vegetais/química , Relação Quantitativa Estrutura-Atividade , Termodinâmica
13.
Molecules ; 24(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744162

RESUMO

The ethyl acetate fraction of the methanolic extract of Yucca schidigera Roezl ex Ortgies bark exhibited moderate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity (IC50 47.44 and 47.40 µg mL-1, respectively). Gel filtration on Sephadex LH-20 and further RP-C18 preparative HPLC of EtOAc fraction afforded 15 known and 3 new compounds, stereoisomers of larixinol. The structures of the isolated spirobiflavonoids 15, 26, and 29 were elucidated using 1D and 2D NMR and MS spectroscopic techniques. The relative configuration of isolated compounds was assigned based on coupling constants and ROESY (rotating-frame Overhauser spectroscopy) correlations along with applying the DP4+ probability method in case of ambiguous chiral centers. Determination of absolute configuration was performed by comparing calculated electronic circular dichroism (ECD) spectra with experimental ones. Compounds 26 and 29, obtained in sufficient amounts, were evaluated for activities against AChE and BChE, and they showed a weak inhibition only towards AChE (IC50 294.18 µM for 26, and 655.18 µM for 29). Furthermore, molecular docking simulations were performed to investigate the possible binding modes of 26 and 29 with AChE.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Yucca/química , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Flavonoides/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos de Espiro/química
14.
Nutr Cancer ; 70(2): 164-175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29300102

RESUMO

Melanoma is the most deadly form of skin cancer, with about 48,000 deaths each year worldwide. Growing evidence suggests that individual nutrients or dietary patterns might have important roles in the prevention of melanoma. Considering that melanoma is a potentially life-threatening cancer, novel protective and adjuvant treatments are needed to improve its prognosis. Curcumin is a bioactive substance extracted from rhizome of Curcuma longa L. Its global market is expected to grow in the next few years, especially in the pharmaceutical industry, due to its numerous physiological and pharmacological properties. For this review, we collected the available data on the protective and therapeutic role of curcumin against melanoma. We also discuss the chemistry, dietary sources, bioavailability, and metabolism of curcumin, and the mechanisms of action of its potential anticancer effects at the molecular level. Current challenges and future directions for research are also critically discussed.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcumina/química , Curcumina/farmacologia , Melanoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Disponibilidade Biológica , Curcumina/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos , Melanoma/prevenção & controle
15.
Crit Rev Microbiol ; 43(6): 668-689, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28346030

RESUMO

Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Doenças Transmissíveis/tratamento farmacológico , Eugenol/farmacologia , Fungos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Doenças Transmissíveis/microbiologia , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Syzygium/química
16.
Chem Biodivers ; 14(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28207990

RESUMO

Plant phenolics are known to display many pharmacological activities. In the current study, eight phenolic compounds, e.g., luteolin 5-O-ß-glucoside (1), methyl rosmarinate (2), apigenin (3), vicenin 2 (4), lithospermic acid (5), soyasaponin II (6), rubiadin 3-O-ß-primeveroside (7), and 4-(ß-d-glucopyranosyloxy)benzyl 3,4-dihydroxybenzoate (8), isolated from various plant species were tested at 0.2 mm against carbonic anhydrase-II (CA-II) and urease using microtiter assays. Urease inhibition rate for compounds 1 - 8 ranged between 5.0 - 41.7%, while only compounds 1, 2, and 4 showed a considerable inhibition over 50% against CA-II with the IC50 values of 73.5 ± 1.05, 39.5 ± 1.14, and 104.5 ± 2.50 µm, respectively, where IC50 of the reference (acetazolamide) was 21.0 ± 0.12 µm. In silico experiments were also performed through two docking softwares (Autodock Vina and i-GEMDOCK) in order to find out interactions between the compounds and CA-II. Actually, compounds 6 (30.0%) and 7 (42.0%) possessed a better binding capability toward the active site of CA-II. According to our results obtained in this study, among the phenolic compounds screened, particularly 1, 2, and 4 appear to be the promising inhibitors of CA-II and may be further investigated as possible leads for diuretic, anti-glaucoma, and antiepileptic agents.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Fenóis/farmacologia , Urease/antagonistas & inibidores , Domínio Catalítico , Simulação por Computador , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
18.
Cancer Metastasis Rev ; 34(3): 359-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26227583

RESUMO

Over the past decades, extensive studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (omega-3 FAs) against different human diseases such as cardiovascular and neurodegenerative diseases, cancer, etc. A growing body of scientific research shows the pharmacokinetic information and safety of these natural occurring substances. Moreover, during recent years, a plethora of studies has demonstrated that omega-3 FAs possess therapeutic role against certain types of cancer. It is also known that omega-3 FAs can improve efficacy and tolerability of chemotherapy. Previous reports showed that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of antineoplastic effect of omega-3 FAs. In this review, we have collected the available clinical data on the therapeutic role of omega-3 FAs against breast cancer, colorectal cancer, leukemia, gastric cancer, pancreatic cancer, esophageal cancer, prostate cancer, lung cancer, head and neck cancer, as well as cancer cachexia. We also discussed the chemistry, dietary source, and bioavailability of omega-3 FAs, and the potential molecular mechanisms of anticancer and adverse effects.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos
19.
Pharmacol Res ; 103: 188-203, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26657416

RESUMO

Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Cumarínicos/farmacologia , Animais , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos
20.
Phytother Res ; 30(4): 532-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27059687

RESUMO

Rhodiola rosea L. (roseroot) is a common member of the family Crassulaceae, known as one of the most important popular medicinal plants in the northern region of Europe. The roots of R. rosea possess a wide range of pharmacological activities such as antioxidant, antiinflammatory, anticancer, cardioprotective, and neuroprotective effects that are because of the presence of different phytochemicals such as phenols and flavonoids. In addition, the presence of salidroside, rosavins, and p-tyrosol are responsible for its beneficial effects for the treatment of on depression, fatigue, and cognitive dysfunction. A plethora of studies report that R. rosea has potent neuroprotective effects through the suppression of oxidative stress, neuroinflammation, and excitotoxicity in brain tissues and antagonism of oncogenic p21-activated kinase. However, to our knowledge, no review articles have been published addressing the neuroprotective effects of R. rosea. Therefore, the present article aims at critically reviewing the available literature on the beneficial effects of R. rosea on as a therapeutic strategy for the treatment of Alzheimer's disease and other neurodegenerative diseases where oxidative stress plays a major role in disease development and progression. We also discuss the cultivation, phytochemistry, clinical impacts, and adverse effects of R. rosea to provide a broader insight on the therapeutic potential for this plant.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Rhodiola/química , Ensaios Clínicos como Assunto , Transtornos Cognitivos/tratamento farmacológico , Dissacarídeos/farmacologia , Glucosídeos/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Quinases Ativadas por p21/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA