Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 56(34): 4468-4477, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28749688

RESUMO

Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water. Compared to the natural protein, it contains an additional Met residue at the N-terminus. In this work, the NMR-derived spatial structure of uniformly 13C- and 15N-labeled CTI and its dynamic behavior were investigated and subjected to comparative analysis with the corresponding data for the native toxin. The differences were found in dihedral angles of only a single residue, adjacent to the N-terminal methionine. Microsecond-long MD traces of the toxins reveal an increased flexibility in the residues spatially close to the N-Met. As the detected structural and dynamic changes of the two CTI models do not result in substantial differences in their cytotoxicities, we assume that the recombinant protein can be used for many purposes as a reasonable surrogate of the native one. In addition, we discuss general features of the spatial organization of cytotoxins, implied by the results of the current combined NMR and MD study.


Assuntos
Venenos Elapídicos/química , Elapidae , Simulação de Dinâmica Molecular , Animais , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Eur Biophys J ; 42(6): 477-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23558512

RESUMO

Protonophores can be considered as candidates for anti-obesity drugs and tools to prevent excessive reactive oxygen species production in mitochondria by means of a limited decrease in the mitochondrial potential. Experimentally used protonophores are weak acids that can carry protons across a membrane in a neutral (protonated) form, and they come back in an anionic (deprotonated) form. A cationic derivative of rhodamine 19 and plastoquinone (SkQR1) was recently shown to possess uncoupling activity in mitochondria and in intact cells. In this article, we studied the mechanism of action of SkQR1 and its plastoquinone-lacking analog (C12R1) on a planar bilayer lipid membrane by applying voltage jumps. The steady-state current was proportional to the C12R1 concentration in a manner as if the monomeric form of the carrier were operative. As predicted by the carrier model, at high pH, when rhodamines were mainly deprotonated, the current changed immediately following a jump in the applied potential and then remained constant. By contrast, at low pH, the current relaxed from an initially high value to a lower value since the protonated carrier cations were redistributed in the membrane. An inverse pH dependence was revealed with the anionic protonophore CCCP. The dependence of the SkQR1 protonophorous activity on voltage exhibited an increase at high voltages, an effect that might facilitate mild (self-limited) uncoupling of mitochondria.


Assuntos
Bicamadas Lipídicas/química , Rodaminas/química , Ânions , Cátions , Membrana Celular/química , Eletrodos , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/química , Potenciais da Membrana , Modelos Químicos , Plastoquinona/química , Prótons
3.
PLoS One ; 8(4): e61902, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626747

RESUMO

Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ionóforos de Próton/farmacologia , Prótons , 2,4-Dinitrofenol/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/antagonistas & inibidores , Plastoquinona/metabolismo , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
4.
FEBS Lett ; 587(13): 2018-24, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23665033

RESUMO

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Animais , Antioxidantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Cátions , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Plastoquinona/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA