Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 18(9): 6431-6436, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677809

RESUMO

Ball-milling process was applied to increase sulfur content in sulfur/polyacrylonitrile (SPAN) composites and improve electrochemical properties of Li/S batteries. In contrast to as-received PAN, pre-heated PAN was pulverized by the ball-milling, resulting in the continuous size reduction with increasing the milling time. Sulfur contents in SPAN composites synthesized with a pre-heated and milled PAN were increased with prolonging the milling time and the maximum content reached 44.5% for the milling time of 10 h. Li/S cells with SPAN electrodes delivered the first discharge capacities of 1356, 1409, 1512, and 1610 mAh/g-sulfur for milling times of 0, 1, 5, and 10 h. The 10 h-milled SPAN electrode with the highest sulfur content exhibited poor initial efficiency and low capacity retention at 100 cycles, whereas from a comprehensive viewpoint of the specific capacity and capacity retention, the 6 h-milled SPAN electrode exhibited the best electrochemical performance due to the suitable size and sulfur content.

2.
Nanoscale Res Lett ; 7(1): 20, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22221620

RESUMO

A patterned film (electrode) with lozenge-shaped Si tiles could be successfully fabricated by masking with an expanded metal foil during film deposition. Its electrochemical properties and structural stability during the charge-discharge process were examined and compared with those of a continuous (conventional) film electrode. The patterned electrode exhibited a remarkably improved cycleability (75% capacity retention after 120 cycles) and an enhanced structural stability compared to the continuous electrode. The good electrochemical performance of the patterned electrode was attributed to the space between Si tiles that acted as a buffer against the volume change of the Si electrode.

3.
Biomaterials ; 33(26): 5997-6007, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22632766

RESUMO

Subnano, nano and sub-micron surface features can selectively activate integrin receptors and induce osteoblast differentiation of bone marrow mesenchymal stem cells. Although it is widely accepted that nanoscale titanium surface roughness may promote differentiation of various osteoblast lineages, there has been no clear report on the threshold dimension of surface features and the optimized dimensions of surface features for triggering integrin activation and stem cell differentiation. This study systematically controlled titanium surface features from the sub-nano to sub-micron scales and investigated the corresponding effects on stem cell responses, such as integrin activation, cyclins, key transcriptional genes of osteoblast differentiation and osteoblastic phenotype genes. Surface features with sub-nano surface dimensions were insufficient to increase integrin activation compared to pure nanoscale titanium surface features. Although both pure nanoscale and nano-submicron hybrid scales of titanium surface features were sufficient for activating integrin-ligand proteins interactions through the α integrin subunits, only nano-submicron hybrid titanium surface features significantly accelerated subsequent osteoblast differentiation of primary mouse bone marrow stromal cells after 2 weeks. In addition, live cell analysis of human bone marrow mesenchymal stem cells on transparent titanium demonstrated rapid cytoskeletal re-organization on the nanoscale surface features, which ultimately induced higher expression of osteoblast phenotype genes after 3 weeks.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Bovinos , Células Cultivadas , Fibronectinas/química , Camundongos , Microscopia de Força Atômica , Reação em Cadeia da Polimerase em Tempo Real , Propriedades de Superfície
4.
Tissue Eng Part A ; 17(13-14): 1879-89, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21417694

RESUMO

Polyurethane (PU) is a versatile elastomer that is commonly used in biomedical applications. In turn, materials derived from nanotechnology, specifically carbon nanofibers (CNFs), have received increasing attention for their potential use in biomedical applications. Recent studies have shown that the dispersion of CNFs in PU significantly enhances composite nanoscale surface roughness, tensile properties, and thermal stability. Although there have been studies concerning normal primary cell functions on such nanocomposites, there have been few studies detailing cancer cell responses. Since many patients who require bladder transplants have suffered from bladder cancer, the ideal bladder prosthetic material should not only promote normal primary human urothelial cell (HUC) function, but also inhibit the return of bladder cancerous cell activity. This study examined the correlation between transitional (UMUC) and squamous (or SCaBER) urothelial carcinoma cells and HUC on PU:CNF nanocomposites of varying PU and CNF weight ratios (from pure PU to 4:1 [PU:CNF volume ratios], 2:1, 1:1, 1:2, and 1:4 composites to pure CNF). Composites were characterized for mechanical properties, wettability, surface roughness, and chemical composition by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and goniometry. The adhesion and proliferation of UMUC and SCaBER cancer cells were assessed by MTS assays. Cellular responses were further quantified by measuring the amounts of nuclear mitotic protein 22 (NMP-22), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha. Results demonstrated that both UMUC and SCaBER cell proliferation rates decreased over time on substrates with increased CNF in PU. In addition, with the exception of VEGF from UMUC (which was the same across all materials), composites containing the most CNF activated cancer cells (UMUC and SCaBER) the least, as shown by their decreased expression of NMP-22, tumor necrosis factor alpha, and VEGF. Moreover, the adhesion of HUC increased on composites containing more CNF than PU. Overall levels of NMP-22 were significantly lower in HUC than in cancerous UMUC and SCaBER cells on PU:CNF composites. Thus, this study provided a novel nanocomposite consisting of CNF and PU that should be further studied for inhibiting the return of cancerous bladder tissue and for promoting normal non-cancerous bladder tissue formation.


Assuntos
Carbono/química , Nanocompostos/química , Nanofibras/química , Poliuretanos/química , Poliuretanos/farmacologia , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanofibras/ultraestrutura , Proteínas Nucleares/metabolismo , Propriedades de Superfície/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Acta Biomater ; 7(5): 2337-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21232636

RESUMO

The immunotoxicity of implanted nanostructured titanium is a paramount issue for vascular, dental and orthopedic applications. However, it has been unclear whether implanted surface nanostructures can inhibit or aggrevate inflammatory responses. Herein, macrophage activation, as evidence of migration, on transparent flat and nanostructured titanium correlated with pro-inflammatory protein synthesis and cytokine release. Through the real-time monitoring of initial cytoskeleton variations, this study identified that macrophage movement was restricted on nanostructured titanium compared to flat titanium surfaces. Furthermore, nanostructured titanium elicited secretion of fewer pro-inflammatory enzyme molecules and cytokines, as well as reduced nitric oxide production. All results collectively indicated that initial macrophage activation can be mitigated by nanoscale surface topography alone, without modification of surface chemistry or stiffness.


Assuntos
Movimento Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Nanoestruturas/química , Titânio/farmacologia , Adsorção/efeitos dos fármacos , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Molhabilidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA