Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062787

RESUMO

Ferroptosis is a type of nonapoptotic cell death that is characteristically caused by phospholipid peroxidation promoted by radical reactions involving iron. Researchers have identified many of the protein factors that are encoded by genes that promote ferroptosis. Glutathione peroxidase 4 (GPX4) is a key enzyme that protects phospholipids from peroxidation and suppresses ferroptosis in a glutathione-dependent manner. Thus, the dysregulation of genes involved in cysteine and/or glutathione metabolism is closely associated with ferroptosis. From the perspective of cell dynamics, actively proliferating cells are more prone to ferroptosis than quiescent cells, which suggests that radical species generated during oxygen-involved metabolism are responsible for lipid peroxidation. Herein, we discuss the initial events involved in ferroptosis that dominantly occur in the process of energy metabolism, in association with cysteine deficiency. Accordingly, dysregulation of the tricarboxylic acid cycle coupled with the respiratory chain in mitochondria are the main subjects here, and this suggests that mitochondria are the likely source of both radical electrons and free iron. Since not only carbohydrates, but also amino acids, especially glutamate, are major substrates for central metabolism, dealing with nitrogen derived from amino groups also contributes to lipid peroxidation and is a subject of this discussion.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Oxirredução , Humanos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo
2.
J Clin Biochem Nutr ; 74(2): 97-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510679

RESUMO

Glutathione peroxidase 4 (GPx4) is an antioxidant enzyme that reduces phospholipid hydroperoxide. Studies have reported that the loss of GPx4 activity through anticancer drugs leads to ferroptosis, an iron-dependent lipid peroxidation-induced cell death. In this study, we established Tamoxifen-inducible GPx4-deficient Mouse embryonic fibroblast (MEF) cells (ETK1 cells) and found that Tamoxifen-inducible gene disruption of GPx4 induces slow cell death at ~72 h. In contrast, RSL3- or erastin-induced ferroptosis occurred quickly within 24 h. Therefore, we investigated the differences in these mechanisms between GPx4 gene disruption-induced cell death and RSL3- or erastin-induced ferroptosis. We found that GPx4-deficiency induced lipid peroxidation at 24 h in Tamoxifen-treated ETK1 cells, which was not suppressed by iron chelators, although lipid peroxidation in RSL3- or erastin-treated cells induced ferroptosis that was inhibited by iron chelators. We revealed that GPx4-deficient cell death was MEK1-dependent but RSL3- or erastin-induced ferroptosis was not, although MEK1/2 inhibitors suppressed both GPx4-deficient cell death and RSL3- or erastin-induced ferroptosis. In GPx4-deficient cell death, the phosphorylation of MEK1/2 and ERK2 was observed 39 h after lipid peroxidation, but ERK1 was not phosphorylated. Selective inhibitors of ERK2 inhibited GPx4-deficient cell death but not in RSL3- or erastin-induced cell death. These findings suggest that iron-independent lipid peroxidation due to GPx4 disruption induced cell death via the activation of MEK1/ERK2 as a downstream signal of lipid peroxidation in Tamoxifen-treated ETK1 cells. This indicates that GPx4 gene disruption induces slow cell death and involves a different pathway from RSL3- and erastin-induced ferroptosis in ETK1 cells.

3.
J Biol Chem ; 298(4): 101824, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288190

RESUMO

Glutathione peroxidase 4 (GPx4) is known for its unique function in the direct detoxification of lipid peroxides in the cell membrane and as a key regulator of ferroptosis, a form of lipid peroxidation-induced nonapoptotic cell death. However, the cytosolic isoform of GPx4 is considered to play a major role in inhibiting ferroptosis in somatic cells, whereas the roles of the mitochondrial isoform of GPx4 (mGPx4) in cell survival are not yet clear. In the present study, we found that mGPx4 KO mice exhibit a cone-rod dystrophy-like phenotype in which loss of cone photoreceptors precedes loss of rod photoreceptors. Specifically, in mGPx4 KO mice, cone photoreceptors disappeared prior to their maturation, whereas rod photoreceptors persisted through maturation but gradually degenerated afterward. Mechanistically, we demonstrated that vitamin E supplementation significantly ameliorated photoreceptor loss in these mice. Furthermore, LC-MS showed a significant increase in peroxidized phosphatidylethanolamine esterified with docosahexaenoic acid in the retina of mGPx4 KO mice. We also observed shrunken and uniformly condensed nuclei as well as caspase-3 activation in mGPx4 KO photoreceptors, suggesting that apoptosis was prevalent. Taken together, our findings indicate that mGPx4 is essential for the maturation of cone photoreceptors but not for the maturation of rod photoreceptors, although it is still critical for the survival of rod photoreceptors after maturation. In conclusion, we reveal novel functions of mGPx4 in supporting development and survival of photoreceptors in vivo.


Assuntos
Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Animais , Sobrevivência Celular/genética , Camundongos , Mitocôndrias/enzimologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia
4.
J Cardiovasc Pharmacol ; 80(5): 690-699, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881422

RESUMO

ABSTRACT: Doxorubicin (DOX) is an effective anti-cancer agent for various malignancies. Nevertheless, it has a side effect of cardiotoxicity, referred to as doxorubicin-induced cardiomyopathy (DIC), that is associated with a poorer prognosis. This cardiotoxicity limits the clinical use of DOX as a therapeutic agent for malignancies. Recently, ferroptosis, a form of regulated cell death induced by the accumulation of lipid peroxides, has been recognized as a major pathophysiology of DIC. Ethoxyquin is a lipophilic antioxidant widely used for food preservation and thus may be a potential therapeutic drug for preventing DIC. However, the efficacy of ethoxyquin against ferroptosis and DIC remains to be fully elucidated. Here, we investigated the inhibitory action of ethoxyquin against GPx4-deficient ferroptosis and its therapeutic efficacy against DOX-induced cell death in cultured cardiomyocytes and cardiotoxicity in a murine model of DIC. In cultured cardiomyocytes, ethoxyquin treatment effectively prevented GPx4-deficient ferroptosis. Ethoxyquin also prevented DOX-induced cell death, accompanied by the suppression of malondialdehyde (MDA) and mitochondrial lipid peroxides, which were induced by DOX. Furthermore, ethoxyquin significantly prevented DOX-induced cell death without any suppression of caspase cleavages representing apoptosis. In DIC mice, ethoxyquin treatment ameliorated cardiac impairments, such as contractile dysfunction and myocardial atrophy, and lung congestion. Ethoxyquin also suppressed serum lactate dehydrogenase and creatine kinase activities, decreased the levels of lipid peroxides such as MDA and acrolein, inhibited cardiac fibrosis, and reduced TUNEL-positive cells in the hearts of DIC mice. Collectively, ethoxyquin is a competent antioxidant for preventing ferroptosis in DIC and can be its prospective therapeutic drug.


Assuntos
Cardiomiopatias , Ferroptose , Camundongos , Animais , Cardiotoxicidade/prevenção & controle , Antioxidantes/uso terapêutico , Etoxiquina/metabolismo , Etoxiquina/farmacologia , Etoxiquina/uso terapêutico , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/farmacologia , Estresse Oxidativo , Doxorrubicina/toxicidade , Miócitos Cardíacos , Apoptose , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/metabolismo
5.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534007

RESUMO

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Bleomicina , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/deficiência , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fator de Crescimento Transformador beta/metabolismo
6.
Am J Respir Cell Mol Biol ; 62(5): 554-562, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017592

RESUMO

To date, increasing evidence suggests the possible involvement of various types of cell death in lung diseases. The recognized regulated cell death includes necrotic cell death that is immunogenic, releasing damage-associated molecular patterns and driving tissue inflammation. Necroptosis is a well-understood form of regulated necrosis that is executed by RIPK3 (receptor-interacting protein kinase 3) and the pseudokinase MLKL (mixed lineage kinase domain-like protein). Ferroptosis is a newly described caspase-independent form of regulated necrosis that is characterized by the increase of detrimental lipid reactive oxygen species produced via iron-dependent lipid peroxidation. The role of these two cell death pathways differs depending on the disease, cell type, and microenvironment. Moreover, some experimental cell death models have demonstrated shared ferroptotic and necroptotic cell death and the synergistic effect of simultaneous inhibition. This review examines the role of regulated necrotic cell death, particularly necroptosis and ferroptosis, in lung disease pathogenesis in the context of recent insights into the roles of the key effector molecules of these two cell death pathways.


Assuntos
Ferroptose , Pneumopatias/patologia , Necroptose , Alarminas/metabolismo , Animais , Autofagia , Humanos , Necrose
7.
J Clin Biochem Nutr ; 66(2): 116-123, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32231407

RESUMO

Glutathione peroxidase 4 (GPx4) is a unique antioxidant enzyme that directly reduces the phospholipid hydroperoxides (PLOOH) generated in biomembranes using glutathione as the reductant. We have previously reported that the Caenorhabditis elegans gpx-quad mutant, which lacks all homologous genes of GPx4 has a reduced lifespan compared with the wild-type. However, the mechanisms underlying the lifespan reduction remain unclear. By monitoring the change in PLOOH production with age, we found that PLOOH was elevated in the gpx-quad mutants compared with the wild-type during the reproductive period. Administration of vitamin E not only reduced the PLOOH content but also prolonged the lifespan of the gpx-quad mutants. In contrast, vitamin C did not extend the lifespan of the gpx-quad mutants. Interestingly, we found that the inhibition of lipid peroxidation by vitamin E during 5 to 10 days after hatching is important to extend the lifespan of C. elegans. These results suggest that production of PLOOH during the reproductive period strongly influences the lifespan of C. elegans.

8.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23842494

RESUMO

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Assuntos
Vírus da Influenza A , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Replicação Viral , Animais , Antivirais/farmacologia , Células Cultivadas , Galinhas/virologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Furões/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Humana/tratamento farmacológico , Macaca fascicularis/virologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Codorniz/virologia , Suínos/virologia , Porco Miniatura/virologia , Replicação Viral/efeitos dos fármacos
9.
J Biol Chem ; 292(36): 14804-14813, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28724632

RESUMO

Superoxide dismutase (SOD) is a ubiquitous antioxidant enzyme that catalytically converts the superoxide radical to hydrogen peroxide (H2O2). In mammals, high SOD activity is detectable in sperm and seminal plasma, and loss of SOD activity has been correlated with male infertility; however, the underlying mechanisms of sperm infertility remain to be clarified. Here we report that the deletion of two major SOD genes in Caenorhabditis elegans, sod-1 and sod-2, causes sperm activation defects, leading to a significant reduction in brood size. By examining the reactivity to the sperm activation signals Pronase and triethanolamine, we found that sod-1;sod-2 double mutant sperm cells display defects in pseudopod extension. Neither the content nor oxidative modification of major sperm protein, an essential cytoskeletal component for crawling movement, were significantly affected in sod-1;sod-2 mutant sperm. Surprisingly, H2O2, the dismutation product of SOD, could activate sod-1;sod-2 mutant sperm treated with Pronase. Moreover, the H2O2 scavenger ebselen completely inhibited pseudopod extension in wild-type sperm treated with Pronase, and H2O2 could directly induce pseudopod extension in wild-type sperm. Analysis of Pronase-triggered sperm activation in sod-1 and sod-2 single mutants revealed that sod-2 is required for pseudopod extension. These results suggest that SOD-2 plays an important role in the sperm activation of C. elegans by producing H2O2 as an activator of pseudopod extension.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Peróxido de Hidrogênio/metabolismo , Espermatozoides/metabolismo , Superóxido Dismutase/metabolismo , Animais , Masculino , Superóxido Dismutase/genética
10.
Emerg Infect Dis ; 24(7): 1128-1238, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912683

RESUMO

Influenza viruses exist in each host as a collection of genetically diverse variants, which might enhance their adaptive potential. To assess the genetic and functional diversity of highly pathogenic avian influenza A(H5N1) viruses within infected humans, we used deep-sequencing methods to characterize samples obtained from infected patients in northern Vietnam during 2004-2010 on different days after infection, from different anatomic sites, or both. We detected changes in virus genes that affected receptor binding, polymerase activity, or interferon antagonism, suggesting that these factors could play roles in influenza virus adaptation to humans. However, the frequency of most of these mutations remained low in the samples tested, implying that they were not efficiently selected within these hosts. Our data suggest that adaptation of influenza A(H5N1) viruses is probably stepwise and depends on accumulating combinations of mutations that alter function while maintaining fitness.


Assuntos
Variação Genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Animais , Linhagem Celular , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , História do Século XXI , Humanos , Influenza Humana/história , Tipagem Molecular , Filogenia , Vigilância da População , Vietnã/epidemiologia , Tropismo Viral
11.
Biochem Biophys Res Commun ; 504(4): 672-678, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209005

RESUMO

Hepatitis B virus (HBV) causes hepatic diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. These diseases are closely associated with persistent HBV infection. To prevent the progression of hepatic diseases, it is thus important to suppress persistent HBV infection. Daunorubicin (DNR), a topoisomerase II (Top II) poison, is a clinically used anticancer agent with a wide spectrum of activity against malignancies. DNR was recently reported to cause DNA damage-dependent interferon (IFN)-ß induction through exogenous cyclic GMP-AMP synthetase (cGAS) and subsequently to suppress Ebola virus replication. In the present study, we demonstrated that DNR caused the inhibition of cell proliferation, but not cell death, through the DNA damage response in immortalized human hepatocyte NKNT-3/NTCP cells. Interestingly, DNR triggered the endogenous cGAS-dependent innate immune response and subsequently suppressed viral production of HBV in NKNT-3/NTCP cells. Top II poisons may be anti-HBV drug candidates.


Assuntos
Daunorrubicina/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Nucleotidiltransferases/genética , Inibidores da Topoisomerase II/farmacologia , Replicação Viral/efeitos dos fármacos
12.
PLoS Pathog ; 12(12): e1006064, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997610

RESUMO

CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Resinas Acrílicas/administração & dosagem , Administração Intranasal , Transferência Adotiva , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Lecitinas/administração & dosagem , Lecitinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
13.
Curr Top Microbiol Immunol ; 403: 143-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28204974

RESUMO

Glutathione peroxidase 4 (Phospholipid hydroperoxide glutathione peroxidase, PHGPx) can directly reduce phospholipid hydroperoxide. Depletion of GPx4 induces lipid peroxidation-dependent cell death in embryo, testis, brain, liver, heart, and photoreceptor cells of mice. Administration of vitamin E in tissue specific GPx4 KO mice restored tissue damage in testis, liver, and heart. These results indicate that suppression of phospholipid peroxidation is essential for cell survival in normal tissues in mice. Ferroptosis is an iron-dependent non-apoptotic cell death that can elicited by pharmacological inhibiting the cystine/glutamate antiporter, system Xc- (type I) or directly binding and loss of activity of GPx4 (Type II) in cancer cells with high level RAS-RAF-MEK pathway activity or p53 expression, but not in normal cells. Ferroptosis by Erastin (Type I) and RSL3 (RAS-selective lethal 3, Type II) treatment was suppressed by an iron chelator, vitamin E and Ferrostatin-1, antioxidant compound. GPx4 can regulate ferroptosis by suppression of phospholipid peroxidation in erastin and RSL3-induced ferroptosis. Recent works have identified several regulatory factors of erastin and RSL3-induced ferroptosis. In our established GPx4-deficient MEF cells, depletion of GPx4 induce iron and 15LOX-independent lipid peroxidation at 26 h and caspase-independent cell death at 72 h, whereas erastin and RSL3 treatment resulted in iron-dependent ferroptosis by 12 h. These results indicated the possibility that the mechanism of GPx4-depleted cell death might be different from that of ferroptosis induced by erastin and RSL3.


Assuntos
Morte Celular/fisiologia , Cicloexilaminas/metabolismo , Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/fisiologia , Fenilenodiaminas/metabolismo , Animais , Carbolinas/farmacologia , Caspases/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Piperazinas/farmacologia
14.
Pathophysiology ; 24(1): 9-15, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27964880

RESUMO

Oxidative stress is implicated in the pathologies of vascular endothelial cells. However, the importance of specific antioxidant enzymes in vascular endothelial cells is not fully understood. The purpose of this study was to elucidate the importance of Glutathione peroxidase 4 (GPx4), and the involvement of ferroptosis on cell death induced by GPx4 loss in human vascular endothelial cells. In addition, we examined the compensatory activity of brown rice on GPx4 ablation condition. Human umbilical vein endothelial cells were transfected with GPx4 or scramble control siRNA. GPx4 knockdown caused the increase in the levels of lipid oxidation, and induced cytotoxicity. On the other hand, α-tocopherol (vitamin E) and extract of brown rice, ameliorated lipid peroxidation, cytotoxicity, and delay of proliferation induced by GPx4 knockdown. Furthermore, ferrostatin-1, inhibitor of ferroptosis, also prevented cytotoxicity and delay of proliferation. In conclusion, our data demonstrated that GPx4 is an essential antioxidant enzyme for protecting lipid peroxidation, and is a regulator of ferroptosis in vascular endothelial cells. Furthermore, vitamin E rich food, such as brown rice, can compensate for GPx4 loss by protecting cells against lipid peroxidation.

15.
J Virol ; 90(6): 2981-92, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719265

RESUMO

UNLABELLED: Highly pathogenic avian influenza viruses of the H5N1 subtype continue to circulate in poultry in Asia, Africa, and the Middle East. Recently, outbreaks of novel reassortant H5 viruses have also occurred in North America. Although the number of human infections with highly pathogenic H5N1 influenza viruses continues to rise, these viruses remain unable to efficiently transmit between humans. However, we and others have identified H5 viruses capable of respiratory droplet transmission in ferrets. Two experimentally introduced mutations in the viral hemagglutinin (HA) receptor-binding domain conferred binding to human-type receptors but reduced HA stability. Compensatory mutations in HA (acquired during virus replication in ferrets) were essential to restore HA stability. These stabilizing mutations in HA also affected the pH at which HA undergoes an irreversible switch to its fusogenic form in host endosomes, a crucial step for virus infectivity. To identify additional stabilizing mutations in an H5 HA, we subjected a virus library possessing random mutations in the ectodomain of an H5 HA (altered to bind human-type receptors) to three rounds of treatment at 50°C. We isolated several mutants that maintained their human-type receptor-binding preference but acquired an appreciable increase in heat stability and underwent membrane fusion at a lower pH; collectively, these properties may aid H5 virus respiratory droplet transmission in mammals. IMPORTANCE: We have identified mutations in HA that increase its heat stability and affect the pH that triggers an irreversible conformational change (a prerequisite for virus infectivity). These mutations were identified in the genetic background of an H5 HA protein that was mutated to bind to human cells. The ability to bind to human-type receptors, together with physical stability and an altered pH threshold for HA conformational change, may facilitate avian influenza virus transmission via respiratory droplets in mammals.


Assuntos
Adaptação Biológica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Mutação de Sentido Incorreto , Ligação Viral , Humanos , Concentração de Íons de Hidrogênio , Virus da Influenza A Subtipo H5N1/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Estabilidade Proteica , Receptores Virais/metabolismo , Temperatura , Internalização do Vírus
16.
Genes Cells ; 19(10): 778-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25200408

RESUMO

The glutathione peroxidase (GPx) family is a major antioxidant enzyme family that catalyzes the reduction of a variety of hydroperoxides. GPxs are divided into selenium- and nonselenium-containing GPxs. Because of their efficient antioxidant activity, which depends on the presence of the amino acid residue selenocysteine, selenium-containing GPxs have been the subject of many studies. However, the physiological roles of the nonselenium GPxs remain unclear. Here, we report that the deletion of phospholipid hydroperoxide glutathione peroxidase (PHGPx) homologues causes accelerated aging that leads to a shortened lifespan in Caenorhabditis elegans. PHGPx is an antioxidant enzyme that directly reduces the phospholipid hydroperoxides generated in biomembranes. The quadruple phgpx mutant gpx-1; gpx-2; gpx-6; gpx-7 developed normally, reached adulthood and reproduced as well as the wild type. However, a lifespan analysis showed that the quadruple phgpx mutant had a short maximum lifespan, with an age-related increase in its mortality rate. The intestine is the primary tissue expressing gpx-1, gpx-2, gpx-6 and gpx-7 in C. elegans, and the expression of gpx-6 is greatly enhanced under starvation conditions. These results suggest that the C. elegans PHGPx homologues have important functions in the regulation of aging, probably by reducing oxidative damage in the intestine.


Assuntos
Caenorhabditis elegans/fisiologia , Deleção de Genes , Glutationa Peroxidase/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Glutationa Peroxidase/metabolismo , Mucosa Intestinal/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfolipídeos/metabolismo , Inanição/metabolismo
17.
J Virol ; 88(16): 8981-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899188

RESUMO

UNLABELLED: Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE: Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We identified differences in the viral replicative ability of and in disease severity caused by these H5N1 viruses. A comparison of global host responses between severe and mild disease cases identified the limited upregulation of interferon-stimulated genes early in infection in severe cases. The dynamics of the host responses indicated that the limited response early in infection failed to suppress virus replication and led to hyperinduction of pathological condition-related genes late in infection. These findings provide insight into the pathogenesis of H5N1 viruses in mammals.


Assuntos
Regulação Viral da Expressão Gênica/genética , Expressão Gênica/genética , Virus da Influenza A Subtipo H5N1/genética , Infecções por Orthomyxoviridae/virologia , Primatas/virologia , Animais , Apresentação de Antígeno/imunologia , Apoptose/imunologia , Células Cultivadas , Cães , Expressão Gênica/imunologia , Regulação Viral da Expressão Gênica/imunologia , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/virologia , Virus da Influenza A Subtipo H5N1/imunologia , Macaca/imunologia , Macaca/virologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/imunologia , Primatas/imunologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Replicação Viral/genética , Replicação Viral/imunologia
18.
Nature ; 460(7258): 1021-5, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19672242

RESUMO

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Cães , Feminino , Furões/virologia , Proteína HN/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Doenças dos Primatas/patologia , Doenças dos Primatas/virologia , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Porco Miniatura/virologia , Replicação Viral
19.
J Am Heart Assoc ; 13(1): e031219, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38158218

RESUMO

BACKGROUND: Ferroptosis, an iron-dependent form of regulated cell death, is a major cell death mode in myocardial ischemia reperfusion (I/R) injury, along with mitochondrial permeability transition-driven necrosis, which is inhibited by cyclosporine A (CsA). However, therapeutics targeting ferroptosis during myocardial I/R injury have not yet been developed. Hence, we aimed to investigate the therapeutic efficacy of deferasirox, an iron chelator, against hypoxia/reoxygenation-induced ferroptosis in cultured cardiomyocytes and myocardial I/R injury. METHODS AND RESULTS: The effects of deferasirox on hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis were examined in cultured cardiomyocytes. In a mouse model of I/R injury, the infarct size and adverse cardiac remodeling were examined after treatment with deferasirox, CsA, or both in combination. Deferasirox suppressed hypoxia- or hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis in cultured cardiomyocytes. Deferasirox treatment reduced iron levels in the endoplasmic reticulum and prevented increases in lipid peroxidation and ferroptosis in the I/R-injured myocardium 24 hours after I/R. Deferasirox and CsA independently reduced the infarct size after I/R injury to a similar degree, and combination therapy with deferasirox and CsA synergistically reduced the infarct size (infarct area/area at risk; control treatment: 64±2%; deferasirox treatment: 48±3%; CsA treatment: 48±4%; deferasirox+CsA treatment: 37±3%), thereby ameliorating adverse cardiac remodeling on day 14 after I/R. CONCLUSIONS: Combination therapy with deferasirox and CsA may be a clinically feasible and effective therapeutic approach for limiting I/R injury and ameliorating adverse cardiac remodeling after myocardial infarction.


Assuntos
Ferroptose , Sobrecarga de Ferro , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Ciclosporina/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Deferasirox/farmacologia , Deferasirox/metabolismo , Deferasirox/uso terapêutico , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão/metabolismo , Ferro/metabolismo , Hipóxia/metabolismo , Sobrecarga de Ferro/metabolismo , Isquemia Miocárdica/metabolismo
20.
J Biol Chem ; 287(10): 7675-82, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22207760

RESUMO

Oxidative stress is implicated in the pathologies of photoreceptor cells, and the protective role of antioxidant enzymes for photoreceptor cells have been well understood. However, their essentiality has remained unknown. In this study we generated photoreceptor-specific conditional knock-out (CKO) mice of glutathione peroxidase 4 (GPx4) and showed the critical role of GPx4 for photoreceptor cells. In the wild-type retina the dominant GPx4 expression was in the mitochondria, indicating the mitochondrial variant was the major GPx4 in the retina. In the GPx4-CKO mice, although photoreceptor cells developed and differentiated into rod and cone cells by P12, they rapidly underwent drastic degeneration and completely disappeared by P21. The photoreceptor cell death in the GPx4-CKO mice was associated with the nuclear translocation of apoptosis-inducing factor (AIF) and TUNEL-positive cells. Photoreceptor cells before undergoing apoptosis (P11) exhibited decreased mitochondrial biomass, decreased number of connecting cilia, as well as disorganized structure of outer segments. These findings indicate that GPx4 is a critical antioxidant enzyme for the maturation and survival of photoreceptor cells.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa Peroxidase/biossíntese , Proteínas Mitocondriais/biossíntese , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Animais , Antioxidantes/metabolismo , Apoptose/fisiologia , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Sobrevivência Celular/fisiologia , Glutationa Peroxidase/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA