RESUMO
A lack of practical resources in Japan has limited preclinical discovery and testing of therapies for pediatric relapsed and refractory acute lymphoblastic leukemia (ALL), which has poor outcomes. Here, we established 57 patient-derived xenografts (PDXs) in NOD.Cg-Prkdcscid ll2rgtm1Sug /ShiJic (NOG) mice and created a biobank by preserving PDX cells including three extramedullary relapsed ALL PDXs. We demonstrated that our PDX mice and PDX cells mimicked the biological features of relapsed ALL and that PDX models reproduced treatment-mediated clonal selection. Our PDX biobank is a useful scientific resource for capturing drug sensitivity features of pediatric patients with ALL, providing an essential tool for the development of targeted therapies.
Assuntos
Bancos de Espécimes Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Camundongos , Animais , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Japão , Xenoenxertos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Camundongos SCID , Modelos Animais de DoençasRESUMO
Cancer treatment using immune checkpoint inhibitors is widely used, although biomarkers predictive of response are not well established. However, both the expressions of programmed cell death ligand 1 (PD-L1) and the tumor mutation burden (TMB) hold promise as such biomarkers for immune checkpoint inhibitors; however, its characteristics and clinical and immunological impacts have not been fully analyzed. We, therefore, evaluated the clinical and immunological parameters related to TMB to identify potential new biomarkers. We enrolled 92 patients with non-small-cell lung cancer who underwent surgery at Fukushima Medical University Hospital from 2013 to 2016. TMB of individual tumors was calculated by whole-exome sequencing analysis. Major cancer-related gene mutations were evaluated using panel sequencing. Expression of PD-L1 and abundance of tumor-infiltrating lymphocytes were evaluated by immunohistochemistry using surgical samples. The median TMB value was 60. TMB was significantly higher in men, current or former smokers, and in patients with squamous cell carcinoma, tumor size ≥ 2.8 cm, wild-type EGFR, TP53 gene mutation-positive status, and cyclin-dependent kinase-inhibitor gene 2A mutation-positive status. According to multivariate analysis, TMB was significantly associated with EGFR gene mutation-negative status (p = 0.0111) and TP53 gene mutation-positive status (p = 0.0425). If TMB is identified as a robust biomarker for immune checkpoint inhibitor administration, analysis of TP53 and EGFR mutations may provide a relatively rapid and easy proxy for predicting TMB.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Pneumonectomia , Idoso , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimioterapia Adjuvante , Receptores ErbB/genética , Feminino , Genômica , Humanos , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Mutação , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Sequenciamento do ExomaRESUMO
Au nanoparticles loaded on semiconductor TiO2 absorb visible light due to their surface plasmon resonance (SPR) and inject the photogenerated hot electrons (ehot-) into the conduction band of TiO2. The separated charges promote oxidation and reduction reactions. The step that determines the rate of the plasmonic photocatalysis on the Au/TiO2 system is the ehot- injection through the Schottky barrier created at the Au-TiO2 interface. In the present work, niobium (Nb5+) oxide species were doped at the Au-TiO2 interface by loading Nb5+ onto the TiO2 surface followed by deposition of Au particles (2 wt % of TiO2). Visible light irradiation of the Au/Nb5+/TiO2 catalysts promotes aerobic oxidation of alcohols with much higher efficiency than that of undoped Au/TiO2. Lewis acidity of the Nb5+ species located at the interface cancels the negative charges of Au and creates a barrier with a narrower depletion layer, promoting tunneling ehot- injection. Efficiency of the ehot- injection depends on the amount of Nb5+ doped. Loading small amounts of Nb5+ (â¼0.1 wt % of TiO2) creates mononuclear NbO4 species and shows large activity enhancement. In contrast, loading larger amounts of Nb5+ creates aggregated polynuclear Nb2O5 species. They decrease the electron density of Au particles and weaken their SPR absorption. This suppresses the ehot- generation on the Au particles and decreases the activity of plasmonic photocatalysis.
RESUMO
The accumulations of excess amounts of polyubiquitinated proteins are cytotoxic and frequently observed in pathologic tissue from patients of neurodegenerative diseases. Therefore, optical and non-invasive methods to detect the increase of the amounts of polyubiquitinated proteins in living cells is a promising strategy to find out symptoms and environmental cause of neurodegenerative diseases, also for identifying compounds that could inhibit gathering of polyubiquitinated proteins. Therefore, we generated a pair of fluorescent protein [Azamigreen (Azg) and Kusabiraorange (Kuo)] tagged ubiquitin on its N-terminus (Azg-Ub and Kuo-Ub) and developed an Azg/Kuo-based Fluorescence Resonance Energy Transfer (FRET) assay to estimate the amount of polyubiquitin chains in vitro and in vivo. The FRET intensity was attenuated in the presence of ubiquitin-activating enzyme inhibitor, PYR-41, indicating that both fluorescent ubiquitin is incorporated into ubiquitin chains likewise normal ubiquitin. The FRET intensity was enhanced by the addition of the proteasome inhibitor, MG-132, and was reduced in the presence of the autophagy activator Rapamycin, designating that ubiquitin chains with fluorescent ubiquitin act as the degradation signal equally with normal ubiquitin chains. In summary, the above optical methods provide powerful research tools to estimate the amounts of polyubiquitin chains in vitro and in vivo, especially non-invasively in living cells.
RESUMO
Dendritic cells (DCs) present exogenous protein-derived peptides on major histocompatibility complex class I molecules to prime naïve CD8+ T cells. This DC specific ability, called cross-presentation (CP), is important for the activation of cell-mediated immunity and the induction of self-tolerance. Recent research revealed that endoplasmic reticulum-associated degradation (ERAD), which was first identified as a part of the unfolded protein response-a quality control system in the ER-plays a pivotal role in the processing of exogenous proteins in CP. Moreover, DCs express a variety of immuno-modulatory molecules and cytokines to regulate T cell activation in response to the environment. Although both CP and immuno-modulation are indispensable, contrasting ER conditions are required for their correct activity. Since ERAD substrates are unfolded proteins, their accumulation may result in ER stress, impaired cell homeostasis, and eventually apoptosis. In contrast, activation of the unfolded protein response should be inhibited for DCs to express immuno-modulatory molecules and cytokines. Here, we review recent advances on antigen CP, focusing on intracellular transport routes for exogenous antigens and distinctive subcellular compartments involved in ERAD.
Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Animais , Apresentação Cruzada , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Inflamação/imunologiaRESUMO
Bacteria inhabiting the human gut metabolize microbiota-accessible carbohydrates (MAC) contained in plant fibers and subsequently release metabolic products. Gut bacteria produce hydrogen (H2), which scavenges the hydroxyl radical (â¢OH). Because H2 diffuses within the cell, it is hypothesized that H2 scavenges cytoplasmic â¢OH (cyto â¢OH) and suppresses cellular senescence. However, the mechanisms of cyto â¢OH-induced cellular senescence and the physiological role of gut bacteria-secreted H2 have not been elucidated. Based on the pyocyanin-stimulated cyto â¢OH-induced cellular senescence model, the mechanism by which cyto â¢OH causes cellular senescence was investigated by adding a supersaturated concentration of H2 into the cell culture medium. Cyto â¢OH-generated lipid peroxide caused glutathione (GSH) and heme shortage, increased hydrogen peroxide (H2O2), and induced cellular senescence via the phosphorylation of ataxia telangiectasia mutated kinase serine 1981 (p-ATMser1981)/p53 serine 15 (p-p53ser15)/p21 and phosphorylation of heme-regulated inhibitor (p-HRI)/phospho-eukaryotic translation initiation factor 2 subunit alpha serine 51 (p-eIF2α)/activating transcription factor 4 (ATF4)/p16 pathways. Further, H2 suppressed increased H2O2 by suppressing cyto â¢OH-mediated lipid peroxide formation and cellular senescence induction via two pathways. H2 produced by gut bacteria diffuses throughout the body to scavenge cyto â¢OH in cells. Therefore, it is highly likely that gut bacteria-produced H2 is involved in intracellular maintenance of the redox state, thereby suppressing cellular senescence and individual aging. Hence, H2 produced by intestinal bacteria may be involved in the suppression of aging.
Assuntos
Senescência Celular , Citoplasma/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Hidrogênio/farmacologia , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Transdução de Sinais/efeitos dos fármacosRESUMO
The pathogenesis of multiple myeloma (MM) has not yet been fully elucidated. Our microarray analysis and immunohistochemistry revealed significant up-regulation of growth arrest-specific gene 6 (Gas6), a vitamin K-dependent protein with a structural homology with protein S, in bone marrow (BM) cells of MM patients. ELISA showed that the serum levels of soluble Gas6 were significantly increased in the MM patients when compared with healthy controls. Gas6 was overexpressed in the human CD138-positive MM cell line RPMI-8226. Exogenous Gas6 suppressed apoptosis induced by serum deprivation and enhanced cell proliferation of the MM cells. The conditional medium from the human BM stromal cell line HS-5 induced cell proliferation and anti-apoptosis of the MM cells with extracellular signal-regulated kinase, Akt, and nuclear factor-κB phosphorylation, which were reversed by the neutralizing antibody to Gas6 or IL-6. The TAM family receptor Mer, which has been identified as a Gas6 receptor, was overexpressed in BM cells of MM patients. The knockdown of Mer by siRNA inhibited cell proliferation, anti-apoptosis, and up-regulation of intercellular cell adhesion molecule-1 (ICAM-1) in MM cells stimulated by an HS-5 cell-conditioned medium. Furthermore, the Gas6-neutralizing antibody reduced the up-regulation of IL-6 and ICAM-1 induced by a HS-5 cell-conditioned medium in MM cells. The present study provides new evidence that autocrine and paracrine stimulation of Gas6 in concert with IL-6 contributes to the pathogenesis of MM, suggesting that Gas6-Mer-related signaling pathways may be a promising novel target for treating MM.
Assuntos
Comunicação Autócrina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/patologia , Comunicação Parácrina/fisiologia , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Células Tumorais CultivadasRESUMO
The hydroxyl radical (OH) possesses the strongest oxidation potential among reactive oxygen species (ROS). Hydroxyl radicals react nonpreferentially with proteins, lipids, and nucleic acids. Additionally, mitochondrial localization of OH causes dysfunction in the mitochondria. The cytoplasmic targets of OH-induced oxidation are unknown. No cytoplasm-specific OH scavenger is available; thus, elucidating the cytoplasmic targets of OH-induced oxidation has proven difficult. Accordingly, we developed a cytoplasm-specific OH-targeted scavenger, TA293, and a mitochondrion-specific scavenger, mitoTA293. Both TA293 and mitoTA293 scavenged OH but not O2- or H2O2. We then examined the intracellular localization of both scavengers in vitro and in vivo. TA293 scavenged pyocyanin-induced cytoplasmic OH but not antimycin A-induced mitochondrial oxidation. mitoTA293 scavenged antimycin A-induced mitochondrial OH but not cytoplasmic OH. TA293 but not mitoTA293 suppressed pyocyanin-induced oxidative damage in the lungs and kidneys of mice. Additionally, TA293 suppressed the expression of inflammatory signaling pathway components and mediators and suppressed OH-induced cellular senescence and apoptosis. These data suggested that TA293 could be used as a novel tool for studying the effects of hydroxyl radical damage within the cytoplasm.
Assuntos
Senescência Celular , Cumarínicos/química , Citoplasma/metabolismo , Sequestradores de Radicais Livres/química , Radical Hidroxila/química , Inflamação , Animais , Antimicina A/química , Apoptose , Proliferação de Células , Espectroscopia de Ressonância de Spin Eletrônica , Fibroblastos/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Luciferases/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Estresse Oxidativo , Piocianina/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Structural colored balloons (SCBs) composed of poly(4-vinylpyridine-co-styrene) (P4VP-PS) exhibited a pH-controlled structural color change in the presence and absence of p-toluenesulfonic acid. The diameter of the SCBs increased and decreased under acidic and neutral conditions, respectively. The different colors exhibited at different pH values supposedly resulted from a change in the shell thickness not only due to the change in the diameter of the SCBs but also due to the uptake of p-toluenesulfonic acid to the pyridyl side chain of P4VP-PS.
RESUMO
AIM: Ovarian serous carcinoma (OSC) and ovarian clear cell carcinoma (OCCC) are two major histological types of epithelial ovarian carcinoma (EOC), each with different biological features and clinical behaviors. Although immunostaining is commonly used for differential diagnosis between OSC and OCCC, correct identification of EOC with mixed-type histology is sometimes a diagnostic challenge. The aim of the present study was to explore candidate genes as potential diagnostic biomarkers that distinguish OSC from OCCC. METHODS: A total of 57 surgical specimens were obtained from EOC patients who had previously undergone primary debulking surgery. Total RNAs were extracted from fresh-frozen tissues of EOC patients, and were used for comprehensive gene expression analysis using DNA microarray technology. RESULTS: Ten candidate genes, FXYD2, TMEM101, GABARAPL1, ARG2, GLRX, RBPMS, GDF15, PPP1R3B, TOB1, and GSTM3 were up-regulated in OCCC compared to OSC. All EOC patients were divided into two groups according to hierarchical clustering using a 10-gene signature. CONCLUSION: Our data suggest that the 10 candidate genes would be an excellent marker for distinguishing OSC from OCCC. Furthermore, the molecular signatures of the 10 genes may enlighten us on the differences in carcinogenesis, and provide a theoretical basis for OCCC's resistance to chemotherapy in the future.
Assuntos
Adenocarcinoma de Células Claras , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Pessoa de Meia-Idade , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Idoso , Diagnóstico Diferencial , Perfilação da Expressão Gênica , Adulto , Biomarcadores Tumorais/genéticaRESUMO
Tactile perception via whiskers is important in rodent behavior. Whisker trimming during the neonatal period affects mouse behaviors related to both whisker-based tactile cognition and social performance. However, the molecular basis of these phenomena is not completely understood. To solve this issue, we investigated developmental changes in transmitters and metabolites in various brain regions of male mice subjected to bilateral whisker trimming during the neonatal period (10 days after birth [BWT10 mice]). We discovered significantly lower levels of 3-methoxy-4-hydroxyphenyl glycol (MHPG), the major noradrenaline metabolite, in various brain regions of male BWT10 mice at both early/late adolescent stages (at P4W and P8W). However, reduced levels of dopamine (DA) and their metabolites were more significantly identified at P8W in the nuclear origins of monoamine (midbrain and medulla oblongata) and the limbic system (frontal cortex, amygdala, and hippocampus) than at P4W. Furthermore, the onset of social behavior deficits (P6W) was observed later to the impairment of whisker-based tactile cognitive behaviors (P4W). Taken together, these findings suggest that whisker-mediated tactile cognition may contribute toprogressive abnormalities in social behaviors in BWT10 mice accompanied by impaired development of dopaminergic systems.
Assuntos
Comportamento Social , Vibrissas , Camundongos , Animais , Masculino , Encéfalo , Tato , CogniçãoRESUMO
Neural precursor cell-expressed developmentally downregulated 4-1 (NEDD4) is an E3 ligase that leads to the degradation of proteins, including estrogen receptor α. We evaluated whether the expression level of NEDD4 affected the outcome of breast cancer patients. We performed a retrospective cohort study enrolling 143 patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer. Of the 66 patients with high NEDD4 mRNA levels (high NEDD4 group) and 77 patients with low NEDD4 mRNA levels (low NEDD4 group), 98.4% and 96.1%, respectively, of the patients had received neoadjuvant/adjuvant hormone therapy. Disease-free survival and overall survival were significantly longer in the low NEDD4 group than in the high NEDD4 group (p = 0.048 and p = 0.022, respectively). Western blotting revealed a high expression of estrogen receptor α in the NEDD4-knockdown culture cells. The proliferation of NEDD4-knockdown cells treated with tamoxifen or estradiol deprivation was suppressed, compared with that of NEDD4-expressing cells. Knockdown of NEDD4 in breast cancer cells induced the accumulation of estrogen receptor α and increased sensitivity to hormone therapy. In summary, this mechanism may lead to a better prognosis in hormone receptor-positive breast cancer patients with a low expression of NEDD4.
RESUMO
A previous report demonstrated that treatment of human hepatocytes with phenobarbital, an activator of nuclear receptor constitutive androstane receptor (CAR), increases mRNA levels of an efflux transporter ABCG2, which is involved in the excretion of xenobiotics in liver and intestine. The results suggest that human CAR (hCAR) transactivates human ABCG2 (hABCG2) expression. In this study, we confirmed increase in ABCG2 mRNA levels in human hepatocytes after adenoviral expression of hCAR and treatment with its activator. Reporter assays suggested the existence of an hCAR-responsive element between -8000 and -7485 of hABCG2 promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays identified a DR5 motif (direct repeat separated by five nucleotides) within the region as a binding motif of hCAR/human retinoid X receptor α heterodimer. The introduction of mutations into the DR5 motif resulted in the complete loss of the hCAR-mediated transactivation. Interestingly, human pregnane X receptor, belonging to the same NR1I subfamily as CAR, did not activate any reporter gene containing the DR5 motif. Taken together, our present findings suggest that hCAR transactivates hABCG2 through the DR5 motif located in its distal promoter in human hepatocytes and that the motif prefers hCAR to pregnane X receptor.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Hepatócitos/metabolismo , Proteínas de Neoplasias/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Receptor Constitutivo de Androstano , Primers do DNA/genética , Teste de Complementação Genética , Células Hep G2 , Humanos , Mutagênese Sítio-Dirigida , Receptor de Pregnano X , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ativação TranscricionalRESUMO
Rett syndrome (RTT) is a neurodevelopmental disorder with X-linked dominant inheritance caused mainly by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. The effects of various Mecp2 mutations have been extensively assessed in mouse models, but none adequately mimic the symptoms and pathological changes of RTT. In this study, we assessed the effects of Mecp2 gene deletion on female rats (Mecp2+/-) and found severe impairments in social behavior [at 8 weeks (w), 12 w, and 23 w of age], motor function [at 16 w and 26 w], and spatial cognition [at 29 w] as well as lower plasma insulin-like growth factor (but not brain-derived neurotrophic factor) and markedly reduced acetylcholine (30%-50%) in multiple brain regions compared to female Mecp2+/+ rats [at 29 w]. Alternatively, changes in brain monoamine levels were relatively small, in contrast to reports on mouse Mecp2 mutants. Female Mecp2-deficient rats express phenotypes resembling RTT and so may provide a robust model for future research on RTT pathobiology and treatment.
Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Cognição , Locomoção , Memória/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Comportamento Social , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Modelos Animais de Doenças , Feminino , Aprendizagem , RatosRESUMO
Lung fibrosis is the primary pathology in idiopathic pulmonary fibrosis and is considered to result from an increase in reactive oxygen species (ROS) levels in alveolar epithelial cells. However, the exact mechanism underlying lung fibrosis remains unclear and there is no effective therapy. The hydroxyl radical (â¢OH) has the strongest oxidizing potential among ROS. Recently, â¢OH localized to the cytoplasm (cyto â¢OH) was reported to induce cellular senescence, while mitochondria-localized â¢OH (mt â¢OH) was reported to induce apoptosis. We developed the cyto â¢OH- and mt â¢OH-scavenging antioxidants TA293 and mitoTA293 to evaluate the effects of cyto â¢OH and mt â¢OH in a bleomycin (BLM)-induced pulmonary fibrosis model. Treatment of BLM-induced pulmonary fibrosis mice with TA293 suppressed the induction of cellular senescence and fibrosis, as well as inflammation in the lung, but mitoTA293 exacerbated these. Furthermore, in BLM-stimulated primary alveolar epithelial cells, TA293 suppressed the activation of the p-ATMser1981/p-p53ser15/p21, p-HRI/p-eIF2ser51/ATF4/p16, NLRP3 inflammasome/caspase-1/IL-1ß/IL1R/p-p38 MAPK/p16, and p21 pathways and the induction of cellular senescence. However, mitoTA293 suppressed the induction of mitophagy, enhanced the activation of the NLRP3 inflammasome/caspase-1/IL1ß/IL1R/p-p38 MAPK/p16 and p21 pathways, and exacerbated cellular senescence, inflammation, and fibrosis. Our findings may help develop new strategies to treat idiopathic pulmonary fibrosis.
RESUMO
OBJECTIVE: Epithelial ovarian cancer (EOC) is a heterogeneous disease with diverse clinicopathological features and behaviors, and its heterogeneity may be concerned with the accumulation of multiple somatic oncogenic mutations. The major goals of this study are to systematically perform the comprehensive mutational profiling in EOC patients, and investigate the associations between somatic mutations and clinicopathological characteristics. METHODS: A total of 80 surgical specimens were obtained from EOC patients who had previously undergone primary debulking surgery, and genomic DNAs were extracted from fresh-frozen tissues. We investigated mutational status in hot spot regions of 50 cancer-related genes by targeted next-generation sequencing using an Ion AmpliSeq Cancer Hotspot Panel v2 Kit. RESULTS: Validated mutations were detected in 66 of the 80 tumors (82.5%). The five most frequently mutated genes were TP53 (43.8%), PIK3CA (27.5%), KRAS (23.8%), PTEN (10%) and CTNNB1 (10%). PTEN and CTNNB1 mutations were associated with younger age. PIK3CA1, KRAS and CTNNB1 mutations were observed in early-stage, whereas TP53 mutations were more common in advanced stage. Significant associations were observed between TP53 mutation and serous carcinoma, and between KRAS mutation and mucinous carcinoma. Both PIK3CA mutation and CTNNB1 mutation were also significantly associated with endometrioid and clear cell carcinoma. The patients with PIK3CA and KRAS mutations were significantly associated with favorable progression free survival (PFS). In particular, PIK3CA mutations had more significant associations with favorable PFS than PIK3CA wild-type in the endometrioid subtype (P = 0.012). Patients with mutations only in TP53 were significantly associated with worse PFS. CONCLUSION: EOCs were heterogeneous at the genomic level and harbored somatic oncogenic mutations. Our molecular profiling may have the potential for becoming a novel stratification within histological subtypes of EOC. Further studies are needed to define molecular classification for improved clinical outcomes and treatment of EOC patients in future.
Assuntos
Carcinoma Epitelial do Ovário/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , MutaçãoRESUMO
PURPOSE: Endometrial carcinoma (EC) is a clinically heterogeneous disease characterized by a number of different histological subtypes, and its heterogeneity may be involved in the accumulation of multiple genetic alterations. The aim of this work was to investigate the comprehensive mutational profile of EC tumors, and examine the associations between somatic mutations and clinicopathological features or survival in EC patients. METHODS: A total of 100 surgical tumors were obtained from EC patients who had previously undergone surgery. Genomic DNA samples extracted from fresh-frozen tissues were analyzed using the Ion AmpliSeq Cancer Hotspot Panel v2 Kit, covering 50 tumor-related genes. RESULTS: Validated mutations were detected in 91 of the 100 tumors (91%) and identified in eight of the most frequently mutated genes, namely PTEN (57%), PIK3CA (51%), TP53 (30%), KRAS (23%), CTNNB1 (21%), FBFR2 (13%), FBXW7(10%) and RB1 (9%). PTEN mutations were found to associated with young age (< 60), early-stage, endometrioid histology, non-recurrence and better overall survival (OS). CTNNB1 mutations were associated with young age, endometrioid histology and better OS. On the other hands, TP53 mutations were associated with late-stage, non-endometrioid histology, high-grade, recurrence and worse OS. FBWX7 mutations were associated with late-stage, vascular invasion and lymph node metastasis. FGFR2 mutations correlated with deep (≥ 1/2) myometrial invasion. CONCLUSION: Our comprehensive mutational profile will be useful for understanding and evaluating the molecular characteristics of EC tumors, and may lead to the establishment of novel treatment strategies that improve the survival of patients with EC in the future.
RESUMO
ß-catenin expression by tumor cells suppressed dendritic cell recruitment to the tumor microenvironment in a melanoma model, resulting in fewer tumor-infiltrating lymphocytes. Immunohistochemistry was used in the present study to examine the association between the expression of ß-catenin and tumor infiltrating lymphocytes and CD11c+ cells in 122 patients with non-small cell lung cancer (NSCLC), who underwent radical surgery. ß-catenin was positive in 24% of NSCLC tumors compared with 59% of squamous cell carcinomas and 11% of adenocarcinomas. There was no significant association between the expression of ß-catenin and the frequency of CD8+ cell infiltration into tumor tissues, including the stroma. Conversely, the infiltration of CD8+ cells into tumor nests was significantly lower in ß-catenin-positive cases compared with that in negative ß-catenin cases. Similarly, CD11c+ cell infiltration was significantly lower in the ß-catenin-positive group. The ß-catenin-positive group had shorter overall survival and recurrence-free survival times compared with that in the negative group. Furthermore, ß-catenin-positive NSCLC had a high tumor mutation burden, but tended to have a low expression of programmed death-ligand 1. In conclusion, the expression of ß-catenin in NSCLC was negatively associated with CD11c+ cells and cytotoxic T cell infiltration at the tumor site and had a tendency towards a poor prognosis.
RESUMO
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
RESUMO
It is well known that tumour initiation and progression are primarily an accumulation of genetic mutations. The mutation status of a tumour may predict prognosis and enable better selection of targeted therapies. In the current study, we analysed a total of 55 surgical tumours from stage IB-IIB cervical cancer (CC) patients who had undergone radical hysterectomy including pelvic lymphadenectomy, using a cancer panel covering 50 highly mutated tumorigenesis-related genes. In 35 patients (63.6%), a total 52 mutations were detected (58.3% in squamous cell carcinoma, 73.7% in adenocarcinoma), mostly in PIK3CA (34.5%) and KRAS and TP53 (9.1%). Being mutation-positive was significantly correlated with pelvic lymph node (PLN) metastasis (P = 0.035) and tended to have a worse overall survival (P = 0.076). In particular, in the patients with squamous cell carcinoma, there was a significant association between being mutation-positive and relapse-free survival (P = 0.041). The patients with PLN metastasis had a significantly worse overall survival than those without (P = 0.006). These results indicate that somatic mutation status is a predictive biomarker for PLN metastasis in early-stage CC, and is consequently related to poor prognosis. Therefore, comprehensive genetic mutations, rather than a single genetic mutation, should be examined widely in order to identify novel genetic indicators with clinical usefulness.